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Safe Performance and Failure

It is assumed that a structure can be in one of
two states:

= Safe when it is able to perform its function
= Unsafe when it cannot perform its function

Inability to perform is a failure

Function requires a clear definition as it can be
very subjective



Exa

mples of Definition of Failure

= When load exceeds load carrying capacity

s When deflection exceeds the maximum
allowed deflection

s W
s W
s W

nen stress in steel reaches yield stress
nen a column buckles

nen a local buckling occurs in a flange or

web of a steel beam
= When there is cracking in concrete
s When there is excessive vibration

Some of these definitions are very subjective



Examples of Failure

= A steel beam may fail by developing a plastic
hinge, loss of overall stability or by local buckling

T
- =

» sStrain

Stress analysis

Figure 5-3 Local buckling in a steel beam.



Example of Failure

= Failure must be clearly defined

s Example: Consider a simply supported, hot-rolled, steel
beam
lP

| | J = = ﬁ

plastic hinge

Figure 5-1 A simply supported beam
Figure 5-2 Development of a plastic hinge in beam.

= The beam fails when deflection exceeds i



Limit State

In each of these cases, there is a critical safe
state on the borderline between safety and
failure. This borderline state is called a limit
state.

Mathematical representation of a limit state is a
limit state function.

Limit state function can be simple or very
complex, depending on load and resistance
parameters, dimensions, time and so on.



Example of a Limit State Function

Let R be the moment carrying capacity (or
resistance) and Q be the load effect. Then, the
limit state function can be formulated as

g=R-Q=0

If g < 0orR < Q, the limit state is exceeded
and the structure fails, otherwise the structure
is safe.



Probability of Failure

Then the probability of failure, P,

P = P(g<0)= P(R<Q)



Limit State Function for a Steel Beam
The limit state function for a compact steel beam
g=4F-D-L-W=0

where Z, = plastic section modulus, F, = yield
stress, D = dead load, L = live load, \K/ = wind load

If g < 0, the limit state is exceeded and the
structure fails, otherwise the structure is safe.



Types of Limit States

Four limit states are considered:

» Ultimate Limit States, ULS

» Serviceability Limit States, SLS
= Fatigue Limit States

= Extreme Events Limit States



Ultimate Limit States

Related to loss of the load carrying capacity

=« Exceeding the moment carrying capacity
» Formation of a plastic hinge

= Crushing of concrete in compression

» Shear failure of the web in a steel beam
» Loss of the overall stability

= Buckling of flange/web

= Weld rupture



Serviceability Limit States

Related to performance of the function

= Cracking of concrete

= Deflection

= Vibration

= Permanent Deformations



Serviceability Limit States

Cracking

Figure 5-7 Cracks in a reinforced concrete beam.

What is acceptable with regard to cracking? Are
acceptable cracks limited by size? Length? Width?



Serviceability Limit States

Deflection

= The acceptable limits are subjective, depend on
human perception.

= A building with a visible deflection is not
acceptable, even though the structure can be
structurally safe.

» For a bridge, limit deflection due to live load is
L/800, where L is the span length.



Serviceability Limit States

Vibration

=« Difficult to quantify

= In a building, the occupants cannot tolerate an
excessive vibration

» For bridges, shaking can be tolerated if no
pedestrians are involved



Serviceability Limit States

Important questions:

= What is acceptable vibration/deflection?

»« How frequently can those limits states be
exceeded?

= How to measure vibrations?



Serviceability Limit States

Permanent deformation

» Accumulation of permanent deflection can lead to
serviceability problems

kink
Figure 5-4 Continuous Bridge Girder.

f —— O~ S

Figure 5-6 Formation of a kink in a continuous steel beam.



Fatigue Limit States

= Related to the accumulation of damage and
eventual failure under repeated loads

s Structural member can fail under loads at the level
lower the ultimate load

» Formulation of fatigue limit state for structural steel and
reinforced concrete

= Acceptability criteria
» Practical design and evaluation criteria




Extreme Events Limit States

Earthquake

Collision (vehicle or vessel)
Flood

Hurricane

Tornado

Act of terrorism



Limit State Function

All realizations of a structure can be put into
one of the two categories

» Safe (load effect < resistance)
» Failure (load effect > resistance)

Each limit state is associated with a certain
limit state function.



Limit State Function

= [he state of the structure can be described using
parameters, X, ...,.X, where X's are load and

resistance parameters

= A limit state function is a function g(Xy,...,X,) of these

parameters, such that

g(Xy,...,X,) = 0 for a safe realization

g(Xy,...,. X)) < 0 for failure



Probability of Failure and
Reliability Index B

Q = load and R = resistance
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Fundamental case

A For

Limit state function: g=R-Q



Fundamental case

A For

Design point

Limit state function: g=R-Q



Fundamental case

From the previous limit state function, g = R - Q, the
probability of failure, P, can be derived considering
the PDF’s of R and Q

PDF
A

» X



Fundamental case

The structure fails when the load exceeds the
resistance, then the probability of failure is equal to

the probability of Q>R, the following equations
result

P, =>P(R=rnQ>r)=>P(Q>R|R=r)P(R=r,)
Py = [ (1= Fo (1)) fi (r,)dr, =1— [ Fq (1) o (1)

P, =>P(Q=0;, "R<q;)=2P(R<Q|Q=q;)P(Q=q;)
Pe :_IFR(qi)fQ(qi)dqi

Too difficult to use, therefore, other procedures are used



Cornell Reliability Index

Depending on complexity of g function, it can be
very difficult to calculate the probability of failure, P,

Pr = P(g<0)

Cornell (1968) proposed to measure reliability in
terms of the reliability index, B,

B = py/o,

where p, = mean of g and o, = standard deviation
of g



Reliability Index, 3

If the limit state function g = R — Q, where R and Q are
independent random variables, then

Mg = Hg ™ Hq

2 — 2 2
o Cr“ + Og

where pr = mean resistance, gy = mean load, o =
standard deviation of resistance, o, = standard
deviation of load



Reliability Index, 3

The reliability index can be calculated using the
following formula (Cornell 1968)

Mg 7 Hg
\/G§+Gé

where pr = mean resistance, gy = mean load, o =
standard deviation of resistance, o, = standard
deviation of load

B



Reliability Index,

If R and Q are independent normal random variables
then g = R - Q is also a normal random variable and

Pr = P(g<0) = [(0- ig)/cr]

Pe = @ (- pg/og) = @ (-B)



Reliability Index,

If R and Q are independent normal random variables
then the reliability index calculated using Cornell’s
formula (Cornell 1968)

Hr = Hg
B

\/GE2 +0§

IS related to the probability of failure as follows,

B=-d1(Pf) or Pr=®(-)



Reliability Index

= Relationship between 3 and P

Pe B
101 1.28
102 2.33
10° 3.09
10+ 3.71
10° 4.26
10° 4.75
107 5.19
10° 5.62
10° 5.99




Reliability Index n-Dimensional Case

Let’s consider a linear limit state function

g(Xy, Xy, o X)) =ag+a; Xy +a, X, + ... +a, X,

= X = uncorrelated random variables, with unknown types of
distribution, but with known mean values and standard deviations

= Then, the reliability index, 3, can be calculated as follows,

n
8o+ 2.1y
=

B=

> (a0, )



Second Moment Reliability Index

n
8y + 2. a;ly
i=1

B=

> (a0, )

The reliability index, 8, depends on py; and o; only (it does
not depend on the type of distribution). Therefore, this
is called a second moment measure of structural safety,
because only the two first moments (mean and variance)
are required. This formula is exact when all X, are normal.
Otherwise, it is only an approximation.



Reliability Index for a Non-linear Limit State Function

s Let’s consider a non-linear limit state function

g (Xll Ly Xn)

= X; = uncorrelated random variables, with unknown types of
dlstrlbutlon but with known mean vaIues and standard
deviations

= Then, the limit state function can be linearized using a
Taylor series expansion

n ag

00, X X, ) 0l )+ 326, )52

where the derivatives are calculated at (X%, ..., X.)



First Order, Second Moment, Reliability Index

N
8o + 2.8y
i—1

B=

%(aiﬁxi )

where a; = calculated at (X7, ..., X.,9).

X,

But how to determine (X%, ..., X.)?



First Order, Second Moment, Mean Value
Reliability Index

g(“xl’HXZ’ """ Mxn)

3o,

=1

B=

where 3 — @—g
OX.

The Taylor series expansion is calculated
about the mean values.



Reliability Index

This reliability index is called a first order, second moment,
mean value, reliability index.

= first order because we use first-order terms in the
Taylor series expansion

» Second moment because only means and variances are
needed

» mean value  because the Taylor series expansion is
about the mean values



Example

= Consider the following beam

Figure 5-13 Beam considered in Example 5-1.



Example (continued)

Consider the simply-supported beam which is 12 ft long.
The beam is subjected to uniformly distributed dead, live,
and wind loads. The mean moment carrying capacity of the
beam is 100 k-ft, and the coefficient of variation of the
capacity is 13%. Calculate the probability of failure for the
beam. Assume all random variables are normally distributed
and uncorrelated



Example (continued)

For the loads

load mean G
dead 0.95 k/ft 0.1 k/ft
live 1.5 k/ft 0.2 k/ft

wind 0.6 k/ft 0.12 k/ft



Example (continued)

The resistance in this case is the moment
carrying capacity of the beam

Vg = Vy = 0.13



Example (continued)

The limit state equation is
g =R-(Mp+M_ +My)

where My, M, and M, represent the midspan
moments caused by dead load, live load, and wind
load, respectively.



Example (continued)

M, = M, = L =12 feet

Substituting these expressions into the limit state
equation and substituting L = 12 feet, we get

g=R-18(w, +w, +w,,)



Example (continued)

= Since the limit state equation is linear, and all
variables are normally distributed and
uncorrelated, to find 3, we can use:

A, + D Ay, 0+1(pg) —18(up + 11, +1y)

\/Z(a 6y )’ Aol +(~180,)° + (185, ) +(-180,,)°
0-+1(100) —18(0.95+ 1.5+ 0.6)

) \/(13)2 +((-18)(0.1))° +((-18)(0.2))° +((-18)(0.12))*
=3.27

PF = ®(-B) = ®(-3.27) = 5.38x10-4



Example

Consider a reinforced concrete beam

A
d=191n

Ag =4 in?
0 00 l

12 in

Figure 5-14 Cross-section of reinforced concrete beam considered in Example



Example (continued)

The moment-carrying capacity of the section
is calculated using

(Af,)

/

f. b

4

f. Db

C

A f
M = Asfy(d —059 y] =A,f,d—-059



Example (continued)

The limit state function is

g(A _f

Q)=A,f,d- 059(Asfy) e

4

f. b

s’y’c’

where Q is the moment (load effect) due to the
applied load. The random variables in the
problem are Q, f,, ./, and A,.



Example (continued)

The distribution parameters and design parameters are given

mean nominal A c V
fy 44 Kksi 40 ksi 1.10 4.62 ksi 0.105
As 4.08 in? 4 in? 1.02 0.08in2 0.02
f.' 3.12 ksi 3 ksi 1.04 0.44 ksi 0.14
Q 2052 k-in 2160 k-in  0.95 246 k-in 0.12

A is the bias factor (ratio of mean value to nominal value). The
values of d and b are assumed to be deterministic constants.

Calculate the reliability index, .



Example (continued)

For this problem, the limit state function is nonlinear. The
Taylor expansion about the mean values yields the following
linear function:

2
<_21(As,fy,fc’,Q)z Hoa ufd—0-59(“Asty) —Hg +(AS—MA)
Y ufc,b */0

-I—(fy - Mfy) 9 + (fC, - Mfc') 8g’

evaluated at mean values c

S levaluated at mean values

y
evaluated at mean values

0
+(Q - “Q)%

evaluated at mean values



Example (continued)

To calculate 3, the partial derivatives must be determined and
the limit state function must be evaluated at the mean values

of the random variables:

g(l"lAs ) “’fy ) ch' 1MQ): HASnyd — 059

2
(“As“fv) 11, =8510 Kk/in

“fc'b
=5871 k/in

" mean values

2A .2
8, =9 - fyd—0.59( ,y)
6A5 mean values fc b
2f A2
a, =9 - Asd—0.59( , )
afy mean values fc b
2
- yNGa
3 ' - ' '
61:0 mean values (fC )2 b
0
ay = —g = _1‘ mean values -1
aQ mean values

=5444 in3

mean values

=1628 in?3



Example (continued)

So, substituting these results into the equation of B we get

O(Ma, s Mg, Hp i Hg)

\/((5871)(% ) +((5444) (o, ))2 " ((162.8)(0fc, ))2 +H((-D(oo))
8510

B=

\/((5871)(0.08))2 +((54.44)(4.62))° +((162.8)(0.44))" + ((~1)(246))°

8510

= ——=235
3621



Comments on the First-Order, Second Moment
Mean Value, Reliability Index

The mean value second moment method is based on
approximating non-normal CDF’s of the state variables by
normal variables, for the simple case in which g(R, Q) = R - Q.
The method has both advantages and disadvantages in the
structural reliability analysis

= Easy to use.

= Does not require knowledge of the distributions of the
random variables.

» Inaccurate results if the tails of the distribution functions
cannot be approximated by a normal distribution.

= Invariance problem: the value of the reliability index
depends on the specific form of the limit state function.



Comments on the First-Order, Second
Moment Mean Value, Reliability Index

approximating approximating
normal = norma 1
distribution distribution

0.9} .-

0.841

0.8

0.7F

0.6
0.5
0.4

03

02

0.1}

Figure 5-15 Mean value second moment formulation.



Comments on the First-Order, Second Moment
Mean Value, Reliability Index

The calculation of the First Order, Second
Moment, Mean Value Reliability Index
depends on the formulation of the
problem



Example

Consider the steel beam

e
- <

Figure 5-16 Steel beam considered in Example Problem 5-3.



Example (continued)

The steel beam is assumed to be compact with parameters Z
(plastic modulus) and vyield stress Fy. There are four random
variables to consider: P, L, Z, Fy. It is assumed that the four
variables are uncorrelated. The means and covariance matrix
are given as

Hp ( 10 kN

U 8 m

uy [ ] 100x106 m3
L 1600x10° kN /m2




Example (continued)

[ 4 KN 2

0
0

0

0
10x10-3 m?
0
0

0

0
400x10-12 m®

0

0
0
0

10x10° (kN / m2)2




Example (continued)

To begin, consider a limit state function in terms of
moments. We can write

PL
A

g,(Z,F,,P,L)=ZF,



Example (continued)

Now, recall that the purpose of the limit state function is to
define the boundary between the safe and unsafe domains,
and the boundary corresponds to g = 0. So, if we divide g,
by a positive quantity (for example, Z), then we are not
changing the boundary or the regions in which the limit state
function is positive or negative. So, an alternate limit state
function (with units of stress) would be

PL 9,(ZF,,P,L)
gz(Z,Fy,P,L):Fy—E: -




Example (continued)

= Since both functions satisfy the requirements for a
limit state function, they are both valid. Now let’s
calculate the reliability index for both functions

s For g,, since it is nonlinear, the limit state function is
linearized about the means. The results are

K K
:|+““Fy(Z_HZ)+MZ(Fy _MFy)_TL(P_HP)_TP(L_HL)

B =2.48



Example (continued)

For g,, which is also nonlinear, again linearize about the
mean values. The results are

Hply Hplly My Hp
~ — / — 1 F — — ——— (L -
g, |:MFy 4“2 } 4( z) ( Mz)"‘( )( HF ) 4“2 ( HP) 4“2 ( lvll_)

B =3.48



Example - Conclusion

This example clearly demonstrates the “invariance” in the
mean value second moment reliability index. In this example,
the same fundamental limit state forms the basis for both limit
state functions. Therefore, the probability of failure (as
reflected by the reliability index) should be the same. Itis

possible to remove the invariance problem, and this is
discussed in the next section.




Hasofer-Lind Reliability Procedure

Calculate p for a given limit state function g(Xy, X, ...,X.)
where the random variables X: are all uncorrelated. If the
variables are correlated, then a transformation can be used
to obtain uncorrelated variables. It is assumed that CDF's are
not available. For a linear limit state function, use Cornell’s

formula. N




Hasofer-Lind Reliability Index

Consider a limit state function g(X;, X, ...,X,) where the
random variables X

Each variable Xi has a corresponding reduced variable (or
standard form) Zi, such as

Xi—Hy,

O x

7 —

So Xi=mxi+ Zisxi



Hasofer-Lind Reliability Index

Replace X: in the limit state function g(Xy, X, ...,X,) with
Xi = mxi + Zi sxi

So the new limit state function is
g(Z1,..42n)=0

Find B as the shortest distance from (0,...0) to g(Z1, ...
Zn)=0 in the reduced variable space



Hasofer-Lind Reliability Index

= The big change comes if the limit state function
iS nonlinear.

= Then, iterations are required to find the design
point {z,*, z,%,...,2,*} in reduced variable space
such that B still corresponds to the shortest
distance



Hasofer-Lind Reliability Index

Z,

L

Uigent . :
\ I/ deSIgn pOlnt

% -
Zl ,

Figure 5-17 Hasofer-Lind reliability index.



Hasofer-Lind Reliability Index

R,Q
A

Figure 5-18 Design point on the failure boundary for the linear limit state function g=R-Q.



Hasofer-Lind Reliability Index

Figure 5-19 Design point and reliability index for a highly nonlinear limit state function.



Hasofer-Lind Reliability Index

The iterative procedure requires us to solve a set of (2n+1)
simultaneous equations with (2n+1) unknowns:

m 3, Oy, Oy eeey Oy
X X X
m 27, 27, ey 2,

where
_ 99
o — @ZI evaluated at design point 0 2
I 2 Z ((X i ) = 1
S ag =1
kz 1[ ol ]
) K evaluated at design point *
Z I Ba |

09 _ 09 0% _ 09
0Z. X, 0z, oX, ™



Hasofer-Lind Reliability Index

There are two alternative procedures
presented below for performing the iterative
analysis. They will be identified as the
“simultaneous equation” procedure and the
“matrix” procedure. The steps in each
procedure are summarized below.



Hasofer-Lind Reliability Index

Simultaneous Equation Procedure:

1. Formulate the limit state function g(X,..., X,)
= 0 and appropriate parameters for all
random variables involved.

2. Express the limit state function in terms of
reduced variables Z; by replacing all X; with

(ki + Z; o)

3. Express the limit state function in terms of 8
and o; by replacing all Z, with o, 3

4. Express each o, as a function of all o, and .




Hasofer-Lind Reliability Index

Calculate o,

I evaluated at design point

2

5. Initial cycle: Assume (guess) numerical values
of B and all a.. It is convenient to start with

Oy = ... =0 = ... = O




Hasofer-Lind Reliability Index

6. Solve the 2n+1 simultaneous equations for 3
and o

9(z;,z5,...,27)=0

_ 9

0L
* I Tevaluated at design point

n ag
\;kzl[ 2,

/. Iterate until the B and «; values converge.

2
evaluated at design point]



Hasofer-Lind Reliability Index

s Matrix Procedure:

1. Formulate the limit state function and appropriate
parameters for all random variables X. (i = 1,2,...,n)
Involved.

2. Obtain an initial design point {x;*} by assuming values
for n-1 of the random variables ki. (Mean values are
often a reasonable initial choice.) Solve the limit state
equation g = 0 for the remaining random variable.
This ensures that the design point is on the failure
boundary.

3. Determine the reduced variables {z*} corresponding
to the design point {x*} using

. Xi — Hx
/. =

O x



Hasofer-Lind Reliability Index

4. Determine the partial derivatives of the limit state
function with respect to the reduced variables. For
convenience, define a column vector {G} as the vector
whose elements are these partial derivatives multiplied

by -1, i.e.,

(G)

e 3
Gl

G,

G

nJ

__99

I | evaluated at design point

5. Calculate an estimate of 8 using the following formula:

_{&y'{z}

B

HGY{G}

{Z*}:< 0

4 % A




Hasofer-Lind Reliability Index

6. Calculate a column vector containing the
sensitivity factors using

. ©
Y= ore

/. Determine a new design point in reduced
variables for n-1 of the variables using

Z; =a;p
8. Determine the corresponding design point values

in original coordinates for the n-1 values in Step
/ using

Xi =Hy +ZiCyx



Hasofer-Lind Reliability Index

9. Determine the value of the remaining
random variable (i.e., the one not found
in steps 7 and 8) by solving the limit
state equation g = 0.

10. Repeat steps 3-9 until B and the design
point {X*} converge.



= Calculate the Hasofer-Lind reliability index for

Example

the 3-span continuous beam shown

Amummm

YYVYY

7

L

<

Figure 5-20 Beam considered in Example 5-4.

>

= [0 solve the problem, we will follow the steps
in the simultaneous equation procedure



Example (continued)

= The random variables in the problem are:

= distributed load (w),

= span length (L),

= modulus of elasticity (E),

= moment of inertia (I).

The limit state to be considered is deflection, and the
allowable deflection is specified as L/360. The maximum
deflection is 0.0069 wL*/EI, and it occurs at 0.446L from

either end (AISC, 1986). The limit state function is
4
o(w,L,E, 1) = ——0.0069"=_
360 El



Example (continued)

Means and standard deviations of the random

variables
variable mean standard deviation
W 10 KN/m 0.4 kN/m
L 5m ~0
E 2x107 KN/m? 0.5x107 KN/m?
I 8x10“4 m4 1.5x104 m*




Example (continued)

s Express g as a function of reduced variables. First,
substituting some numbers, g can be expressed as

g=0 = 3—6530EI—O.OO69(54)W:O = EI-310.5w =0

s Define the reduced variables




Example (continued)

= Substitute into g
(ne +Z,0¢ )0, +Z,0,)-3105(p,, + Z,5,,)=0

(2x107 + Z,(05x107))(8x10* + Z, (15x10™*)) - 310.5(10 + Z,(0.4)) = 0

(3000)Z, + (4000)Z, + (750)Z,Z, — (124.2)Z, +12895=0
= Formulate g in terms of B and a
Z; =Pa,;

U
3000Ba., + 4000Bat, + 750B20, 0, —124.2B0t, +12895=0

B ~12895
30000, + 40000, + 750Bat,0., —124.2Bc,

B



Example (continued)

s Calculate o; values

) (3000 + 750B0,)
' /(3000 + 750Bct, )? + (4000 + 750Bct, )2 + (~124.2)°
_(4000 + 7508, )
(3000 + 750Ba, )2 + (4000 + 750Ba, )? + (—124.2)?

a

a, =

_(~124.2)

(00

> /(3000 + 750Br,)? + (4000 + 750Bar, )2 + (~124.2)?



Example (continued)

= The iterations start with a guess for B, a4, a,, a;. For
example, let's start with

o, =a, =—/0333=-058 ; o,=+v0333=058
1 2 3

and let g =3



Example (continued)

= The iterations are summarized. Notice that between
iterations 5 and 6, the values change very little, so the
solution has converged. Faster convergence occurs when

the correct signs for the o's are used (+ for load, - for
resistance)

Initial Guess Iteration #
1 2 3 4 5 6
B 3 3.664 3.429 3.213 3.175 3.173 3.173
a, -0.58 -0.532 -0.257 -0.153 -0.168 -0.179 -0.182
a, -0.58 -0.846 -0.965 -0.988 -0.985 -0.983 -0.983
o, +0.58 0.039 0.047 0.037 0.034 0.034 0.034

So, the calculated reliability index is approximately 3.17



Reliability Analysis Methods

s Linear limit state function

= All normal random variables — use Cornell’s formula —
result is exact

= Some are non-normal random variables - use Cornell’s
formula — result is approximated

= Some are non-normal random variables — use Rackwitz-
Fiessler procedure — results are close to exact

= Non-linear limit state function
» Use Hasofer-Lind procedure

[ Any type

= Use Monte Carlo simulations — accuracy depends on
number of runs

= Use Rosenblueth 2n+1 method — approximate method,
recommended when each run takes a long computer time




RACKWITZ-FIESSLER PROCEDURE

A procedure to calculate a reliability index when some
of the random variable are not normal. The
cumulative distribution functions must be known for
all the variables involved.

The basic idea.

Replace each non-normal random variable with a
normal variable such that CDF and PDF are the same
for replaced and replacing variables at the so called
“design point”. Coordinates of the design point are
found in iterations.



RACKWITZ-FIESSLER PROCEDURE - Steps

1. Guess coordinates of the design point (you can
start with mean values)

2. Replace non-normal variables with normal such
their CDF and PDF are the same at the design
point.

3. Calculate B using Cornell’s formula (for a linear
limit state function)

4. Calculate coordinates of the new design point.

5. GO to step 2. Stop when the required accuracy is
reached.



Mean and o of approximating normal distribution

Suppose that a particular random variable X with mean p, and
standard deviation oy is described by a cumulative distribution
function Fy(x) and a probability density function f,(x)

III

To obtain the “equivalent normal” mean n,¢ and standarc
deviation &, we require that the CDF and PDF of the actual
function be equal to the normal CDF and normal PDF at the
valéle of the variable x* on the failure boundary described by g

Mathematically, these requirements are expressed as

Fx(x*>=c1>(x*‘“exj fl(x)=— 4{”‘“;}

e
G x



RACKWITZ-FIESSLER PROCEDURE

= Suppose that a particular random variable X with
mean py and standard deviation oy is described by a
cumulative distribution function FX?X) and a
probability density function f,(x)

III

= To obtain the “equivalent normal” mean p,& and
standard deviation c,¢, we require that the CDF and
PDF of the actual function be equal to the normal
CDF and normal PDF at the value of the variable x*
on the failure boundary described by g = 0.

s Mathematically, these requirements are expressed as




RACKWITZ-FIESSLER PROCEDURE

By manipulating these equations :

pg =x" — oy | O1(F (x)))




RACKWITZ-FIESSLER PROCEDURE

Two Uncorrelated Variables

1. Let the limit state function be g = R — Q. The design
point (R*, Q*) on the safety boundary, so R* = Q*.

2. Guess an initial value of R*, between pp and py,.
Then Q* = R*,

3. Approximate F, and F, by normal Fg® and Fy® such that,
fr¥(R*) = fr(R*)
Fr8(R*) = FR(R¥)
fo(Q*) = fo(Q¥)
Fo®(Q*) = Fo(Q¥)



RACKWITZ-FIESSLER PROCEDURE

4. Calculate the mean and o of the approximating normal
distributions

o _ ¢ [R(RH)]
) fr(R*)

MRe =R *_GRECD_1 [FR (R *)]

sl )
; fo(Q*)

1y’ =Q*—o, 0 [F, (Q*)]




RACKWITZ-FIESSLER PROCEDURE

5. Calculate  for the approximating normal distributions
B = Hr —Hg

Vo F+(og" f

6. Calculate the new design point

R* = p1,.° — B( g )2
o F+(oy )
e f’( cTQe )2
Q"= +
o JCow Yoy )

/. Go to step 2, and repeat the calculations until frew = Bold



How to Determine Load and
Resistance Factors?
a If failure is to occur — what are the

most likely values of load and
resistance?

= These values are the coordinates of
the so called “design point”



Fundamental case

= Space of State Variables

AFg .

Design point

Limit state function: g=R-Q



Design Point - Load

uq = Mean value of load
op = Standard deviation of resistance

oq = Standard deviation of load
B = Reliability Index



Design Point - Resistance
2

a2+a

R™= pup- ﬁ\/

pup = Mean value of resistance
op = Standard deviation of resistance

oq = Standard deviation of load
B = Reliability Index



Load Factor, ¥ o
YQ — Qn
Q,, = nominal value of Q

Q" = coordinate of the design
point for Q



Resistance Factors, ¢

¢=H

R, = nominal value of R

R™ = coordinate of the
design point for R



RACKWITZ-FIESSLER PROCEDURE

s Matrix Procedure :

1. Formulate the limit state function. Determine the
probability distributions and appropriate parameters for
all random variables X;

2. Obtain an initial design point {x;*} by assuming values for
n-1 of the random variables X.. (Mean values are often a
reasonable choice.) Solve the limit state equationg = 0
for the remaining random variable. This ensures that
the design point is on the failure boundary.

3. For each of the design point values x.* corresponding to a
non-normal distribution, determine the equivalent
normal mean and standard deviation. If one or more
X.* values correspond to a normal distribution, then the
equivalent normal parameters are simply the actual

parameters.



RACKWITZ-FIESSLER PROCEDURE

4. Determine the reduced variables {z*} corresponding
to the design point {x*} using
. Xi — M,

Cx.
5. Determine the partial derivatives of the limit state
function with respect to the reduced variables.

{G}=4.$ G a9

G i |evaluated at design point



RACKWITZ-FIESSLER PROCEDURE

6. Calculate an estimate of 3 using the following formula

NI © 9 “

_ -
HCY{G} (z)=1%1

For a linear limit state function Z, |

n
d, + Zai“?(i
i—1

B: n
E(aicg(i)z



RACKWITZ-FIESSLER PROCEDURE

/. Calculate a column vector containing the sensitivity
factors using

0y=— 3

WG} {G}

8. Determine a new design point in reduced variables
for n-1 of the variables using

Z; =a,;f3

9. Determine the corresponding design point values in
original coordinates for the n-1 values in Step 7

usin N N
; Xi =Wy +Zjox



RACKWITZ-FIESSLER PROCEDURE

10. Determine the value of the remaining random
variable (i.e., the one not found in steps 8 and 9)
by solving the limit state function g = 0.

11. Repeat steps 3-10 until B and the design point {x;*}
converge.



Example

= The modified matrix procedure is demonstrated on a
simple case of two uncorrelated variables. Let R be

the resistance and Q be the load effect. The limit
state function is

g(RIQ)=R_Q

R lognormally distributed iz = 200 and o = 20.
Q extreme Type I distribution py, = 100 and 64 = 12.

Objective = calculate 3



Example (continued)

1. Formulate limit state function and cumulative
distribution functions.

2. Initial design point : Try r* = 150 - arbitrary guess
From the limit state equation g = 0, g* = 150

3. Determine equivalent normal parameters

2
Cin = In(1+ G—?j =995x102% = o,z =0.0998
Hr
Mg = In(pg)— 05075 =529 . .
Hg =T [1_ In(r )+lvl|nR]

ot =r"o, r =(150)(0.0998) =15.0 = (150)[1 - In(150) + 5.29]
=192



Example (continued)

Q : extreme type I distribution
Fo (q) = exp|—exp(-a(q — u))]
fo () =alexp(—a(q — u))} exp[—exp(-a(q — u))|

a and u are distribution parameters related to the
mean and standard deviation of Q

J— - 05772 o 2
Ha a ’ 666

Plugging in the values of ., and o4, we find @a=0.107 and u=94.6.

Fo(q")=0997 ; f,(q*)=286x10~



Example (continued)

1
2.86x10+

1
()

¢ = ¢|©+(0997)|= 289

o @1(Fy (a7))| =

ue =q° — Gg[d)—l(FQ (q*))] =695

4. Determine the values of the reduced variables
Z,* : reduced variable for r*
Z,* : reduced variable for g*
" R i

7=l THR_ 583 . - —278
Ge
Q




Example (continued)

5. Determine the {G} vector
a9

- — — e — _15¢
1 0z, {z7} OR {x?}GR O
2 =T i 2—@ G%=+1G%

ol Rl

6. Calculate an estimate of .

IR i S

- HG}{G}




Example (continued)

/. Calculate {a}:

()= Gy {—0.460}
JkGy{Gr |o0ses

8. Determine new values of z* for n-1 of the variables.
For example

2" = o,B = (—0460)(3.78) = —174

9. Determine r* using the updated z,*:
" =pg +2z;6% =166

10. Determine the value of g* using the limit state
equation g = 0. For this case, g* = r* = 166



Example (continued)

11. Iterate until the value of B and the design point converge

Iteration #
1 2 3

r 150 166 168
q 150 166 168
\’

B 3.78 3.76 3.76
\’

r 166 168 168
q" 166 168 168



RACKWITZ-FIESSLER PROCEDURE
GRAPHICAL PROCEDURE

Can be applied when the CDFs of the basic variables are
available as plots on normal probability paper.

Each non-normal variable is approximated by a normal
distribution, which is represented by a straight line.

The value of the CDF of the approximating normal
variable is the same at the design point as that of the
original distribution.

On normal probability paper this means that the straight
line intersects with the original CDF at the design point.

Since the PDF is a tangent (first derivative) of the CDF,
the straight line (approximating normal) is tangent to the
original CDF at the design point.

The parameters of the approximating normal distribution
(mean and standard deviation) can be read directly from
the graph.



RACKWITZ-FIESSLER PROCEDURE

normal probability paper

GRAPHICAL PROCEDURE

0.3 tangent to Fy at r*

0.1

Figure 5-22 Graphical illustration of Rackwitz-Fiesslerr procedure.



Example of Graphical Procedure
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EXAMPLE

We will demonstrate the calculation of the reliability index
using the graphical procedure for the limit state function

g (RI Q) =R - Q
where
R = variable representing resistance

Q = variable representing the load effect

The CDF's for R and Q are plotted on normal probability paper



EXAMPLE
continued

Probability

0.9999

0.9990
0.9980

0.9900
0.9800

0.9500

0.9000
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0.8000

0.7000

0.6000
0.5000

0.4000
0.3000

0.2000

0.1000

0.0500

0.0200
0.0100

0.0050

0.0020
0.0010
0.0005

0.0001

.o 1:"Q
C
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F'o / : / HEREY i /
P /’u — 1) : :// /
7 | 1d 1 r*=q* \ !
/// v A % 7
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J
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B
/
/
/
[
/
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Figure 5-23 Graphical solution for Example Problem 5-12.
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EXAMPLE
(continued)

Basics steps for the graphical
procedure

1.  Guess the initial value of
the design point, e.g.
assume r* = g* = 50 ksi.
Mark points A and B on
the plots of Fy and F,

respectively

2.  Plot tangents to Fy and F
at Aand B

3. Read directly from the
graph

g =56 Ksi on =3.5 ksi

He =14 ksi G, =14.5 ksi

Probability

0.9999

0.9990
0.9980

0.9900
0.9800

0.9500

0.9000

0.8410
0.8000

0.7000

0.6000
0.5000

0.4000
0.3000

0.2000

0.1000

0.0500

0.0200
0.0100
0.0050

0.0020
0.0010
0.0005

0.0001

R

N
i

=]

e
\1\\\
N
o]

=~
>

~N
\\

// L Fy /
A/ S aHa e
/A | ! /7
YAl i
//e l :I:///
Al r=q* o
// o / /\.I /

)

a
3 =
4y
34
v

Q

4

s
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\\~

vs]

T~
e —

\\

5\

10 20 30 40 50 60 70 80

Figure 5-23 Graphical solution for Example Problem 5-12.
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EXAMPLE
(continued)
4.

p

5.

r

*

Calculate 3

Hr — Mg

56-14

=282

J(G;)Z +(og)2 i J(35)% + (14.5)°

Calculate new design point.
The value of g* is found from the
requirement g = 0. Therefore,

q* = r*.

. (on)B

=Ur —
J(68)7 +(c5)

e (35)°(282)

T J(35)? +(145)°

0.9999

N
N

1
=]

0.9990

0.9980

]
\1\\\
AN

]
|

0.9900

0.9800

Vi

~N
\\

0.9500

=

0.9000
0.8410

///

e
N
\\\\

/
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\\
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e
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=53.7 ksi

Figure 5-23 Graphical solution for Example Problem 5-12.
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EXAMPLE
(continued) o

6. Plot tangents to Fr and Fq at C and D22
using the updated design point.

0.9500
0.9000
7. Read directly from the graph 05000
0.7000

ng =61 ksi o, =6.5 ksi Z 06000

< 0.5000
S
£ 0.4000

ug =115 ksi  of =155 ksi

0.2000

0.1000

0.0500

0.0200

8. Calculate new B and design point, o

0.0050
0.0020

B = 294 r* = q* = 536 0.0010

0.0005

0.0001

9. The process would continue
until B converges to a value

b \
\\ N
S~
N
\\
N

/A4
FQ :/ 1
//ua i g I:///
’/‘/Ge/ 0

Q rf
7 d\_f .
new design > O
/ point / R

§§

10 20 30 40 50 60 70 80

Figure 5-23 Graphical solution for Example Problem 5-12.
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RACKWITZ-FIESSLER PROCEDURE
CORRELATED RANDOM VARIABLES

= So far, we have considered limit state equations in
which the random variables are all uncorrelated.

= However, in many practical applications, some of the
random variables may be correlated, and this
correlation can have a significant impact on The
calculated reliability index.

= [0 deal with correlated random variables, we can
take two approaches:



2.

RACKWITZ-FIESSLER PROCEDURE
CORRELATED RANDOM VARIABLES

Use a coordinate transformation. This approach
can become messy when dealing with the
Rackwitz-Fiessler procedure involving equivalent
normal parameters.

Modify the procedure presented by introducing a
correlation matrix [p]. The correlation matrix [p] is
the matrix of correlation coefficients for the random
variables involved in the limit state equation. The
modified equations are as follows:

5= {G}"{z"} . {G}y {z"}
KGI{G} changes to KGHpKG}

__ G} [PKG}
o fGr{cy Changesto o} Cune




EXAMPLE

= Calculate the reliability index, 3, for the limit state
function

a(X;, X,) = 3X; - 2%,
ty =166 ; o, =245
ny =188 ; o, =283

Cov (Xy, X;5) = 2.0.
We don’t have any information on the distributions of X,

and X,, so we will assume they are both normally
distributed.



EXAMPLE (continued)

Formulate limit state function and probability
distributions.

Guess an initial design point. We will assume a
value for x,;* of 17. From g = 0, x,*= 25.5.

Determining equivalent normal parameters is not
necessary since we are assuming both variables are
normally distributed

Determine the values of the reduced variables
z; =0163 ; z;,=237
Determine the {G} vector

1= _8879 == 88)? Ox, = (_B)le
1z} LHxi)
2 =7 9 = 9 Gy, =20y
0Z, () oX, (x) ? ?




EXAMPLE (continued)

6. Calculate an estimate of f3

Cov(X,, X,)| T )

1 1
[p]= 6%0x, |_ (245)(283) | [ 1 0288
p Cov(X,,X,) 1 2 0288 1
Ox.9x, | L (245)(283)

/. Calculate {a}:

S (©) 4h G NPT
JIG}Y[pKG}

___|eKer {—0.726}
o JHGY[plfcy [ 0449




EXAMPLE (continued)

8. Determine new values of z* for n-1 of the variables
z: = o,p = (-0.726)(L55) = —1.13
9. Determine the value of x,* using the value of z,*:
X] =HUyx, +2j04 =138
10. Determine the value of x,* using the limit state
equation g = 0.

X,*= 20.7

11. Iterate until the value of B and the design point
converge.



EXAMPLE (continued)

Results (correct answer after one iteration)

lteration #
1 2

X, 17 13.8
X,” 25.5 20.7
\!

B 1.55 1.55
\!

X,” 13.8 13,

X," 20.7 0.7



Reliability Analysis
using Monte Carlo Method

s Given limit state function:
g = g (Xll X2/ --'Xn)

where X, X,, ...X,, are random variables

s for each X, CDF is F; (x)



Reliability Analysis Procedure

1. For each random variable Xy, X, , ..., X,
generate values of x4, X5 , ..., X,

2. Calculate
g = g (Xll XZI -"Xn)

3. Repeat steps 1 and 2, M times, resulting
in M values of g: g4, g5, ...y

4. Determine the probability of failure, Py,
and reliability index, 3



Probability of Failure, P,
and Reliability Index, B

Option (a)
Count the number, m, of negative values of

g,
calculate

P;= m/M
B=-o(Py)

For accurate results, m should be = 10



Probability of Failure, P,
and Reliability Index, B

Option (b)
Plot CDF of g on the normal probability paper

0.99 +

3_
5 27 0.9 -+
>

1 =
= % 0.6 +
c a

3T 0.01; Pf

Standard normal variable
»\N —
| | | | |
r\
geo) 1
o




Probability of Failure, P,

and Reliability Index, B
Option (¢)
If CDF of g is too short then either increase
M or extrapolate

A

w
|

N
|

Standard normal variable
\ 4
(@]

N
L |
1 O 1
-

N

1\ 1

W -
\




Reliability Analysis using
Monte Carlo Method - Example

= Calculate P;and

= Given limit state function:
g(RDL)=R-(D+1L)



Reliability Analysis using
Monte Carlo Method - Example

s Given:

= Dead load, normally distributed
= D =75kt
- Ap= 1.03
= Vp=0.10

= Live load, normally distributed
= L =110 k-ft
= & = 0.80
= v, =0.14

= Resistance, lognormally distributed
= L = 255 k-ft
- Ag=1.11
= Vg=0.12

= Assume D, L, R are uncorrelated random variables



Calculate mean values and standard deviations

= Dead load
Gp = Up VD - 7.73 k'ft

= Live load
w = L2, = 88.00 k-ft
GL - “L VL = 12.32 k'ft

s Resistance
ug = R A, = 283.05 k-ft
or = 1 Vg = 33.97 k-ft
MRy = IN(py) = 5.65 k-ft
S’ = VR = 0.0144
Oinxy = 0.12 k-ft



Monte Carlo Simulation Results

(18 out of 500 runs in this example)

no random Z; D, random Z; L; random Z; R; R-D-L
1 0.51938 0.0486 77.63 0.66292 0.4204 93.18 0.70252 0.5317 301.11 130.30
2 0.96848 1.8589 91.61 0.28507 -0.5678 81.00 0.99603 2.6544 373.21 200.60
3 0.58211 0.2073 78.85 0.47295 -0.0678 87.16 0.90875 1.3331 328.33 162.31
4 0.73213 0.6193 82.03 0.56859 0.1728 90.13 0.01083 -2.2962 205.06 32.90
5 0.24471 -0.6912 71.91 0.30698 -0.5044 81.79 0.56467 0.1628 288.58 134.88
6 0.29664 -0.5341 73.12 0.29250 -0.5461 81.27 0.73470 0.6271 304.35 149.95
7 0.80078 0.8444 83.77 0.19941 -0.8437 77.61 0.09938 -1.2851 239.40 78.02
8 0.23012 -0.7384 71.55 0.78669 0.7950 97.79 0.51991 0.0499 284.75 115.41
9 0.39553 -0.2649 75.20 0.63161 0.3361 92.14 0.58271 0.2088 290.14 122.80
10 0.12148 -1.1676 68.23 0.74777 0.6675 96.22 0.01444 -2.1852 208.83 44.37
11 0.71842 0.5782 81.72 0.16179 -0.9871 75.84 0.35544 -0.3707 270.46 112.90
12 0.18739 -0.8875 70.39 0.48303 -0.0426 87.48 0.74109 0.6467 305.02 147.15
13 0.16641 -0.9684 69.77 0.97407 1.9444 111.95 0.16753 -0.9640 250.31 68.58
14 0.45987 -0.1008 76.47 0.40025 -0.2527 84.89 0.72532 0.5987 303.39 142.03
15 0.43911 -0.1532 76.07 0.19361 -0.8647 77.35 0.59049 0.2288 290.82 137.41
16 0.83112 0.9586 84.66 0.61738 0.2986 91.68 0.90234 1.2950 327.04 150.70
17 0.33991 -0.4127 74.06 0.07903 -1.4116 70.61 0.69240 0.5027 300.12 155.45
18 0.32084 -0.4653 73.66 0.82758 0.9447 99.64 0.67419 0.4515 298.39 125.09




Monte Carlo Simulation Results
(18 out of 500 runs in this example)

no R-D-L M/(M+1) @ M/(M+1)]
1 -25.51 0.0020 -2.8788
2 21.90 0.0040 -2.6527
3 28.46 0.0060 -2.5128
4 28.47 0.0080 -2.4096
5 30.70 0.0100 -2.3271
6 32.90 0.0120 -2.2579
7 33.58 0.0140 -2.1981
8 34.09 0.0160 -2.1452
9 39.89 0.0180 -2.0977
10 41.45 0.0200 -2.0546
11 43.71 0.0220 -2.0149
12 44.37 0.0240 -1.9782
13 44.63 0.0259 -1.9440
14 46.55 0.0279 -1.9119
15 47.30 0.0299 -1.8817
16 50.16 0.0319 -1.8531
17 50.40 0.0339 -1.8259
18 50.87 0.0359 -1.8000




Results of Simulation: CDF's of D, L and R
(500 runs)

4.00

3.00 -

Al @ Series 1-load D
2.00 A
B Series 2 - load L

1.00 - A Series 3 - resistance R

0.00 T
0.p0 50.00

-1.00 -

100.00 150.00 200.00 250.0

300.00 350.00 400.00 450.00

standard deviation

-2.00 A

-3.00 - ue A

-4.00



standard normal variable

-50.00

Results of Simulation, g = R-D-L

(500 runs)

y = 0.0264x - 3.1048

150.00 200.00 250.00 300

(&)
o

.00



Results of Simulation: P; and (3
(500 runs)

Reliability index
B =3.10

Probability of failure

P, = @ (-B) = 0.0010



Results of Simulation, g = R-D-L

standard normal variable

4.00

3.00 -

2.00 -

1.00 -

0.00

-1.00 A

-2.00 -

-3.00

-4.00

(50 runs)
y = 0.0279x - 3.1838
4
.p0 150.00 200.00 25(
‘0
s “~ extrapolation is needed
p=3.18

.00



Results of Simulation: P; and (3
(50 runs)

Reliability index
B =3.18

Probability of failure

P, = @ (-B) = 0.0007



