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Safe Performance and Failure 

It is assumed that a structure can be in one of 
two states: 

 Safe when it is able to perform its function 

 Unsafe when it cannot perform its function 

Inability to perform is a failure

Function requires a clear definition as it can be 
very subjective 



Examples of Definition of Failure

 When load exceeds load carrying capacity

 When deflection exceeds the maximum 
allowed deflection

 When stress in steel reaches yield stress

 When a column buckles

 When a local buckling occurs in a flange or 
web of a steel beam

 When there is cracking in concrete

 When there is excessive vibration

Some of these definitions are very subjective



Examples of Failure

 A steel beam may fail by developing a plastic 
hinge, loss of overall stability or by local buckling



Example of Failure
 Failure must be clearly defined

 Example: Consider a simply supported, hot-rolled, steel 
beam 

 The beam fails when deflection exceeds dcritical



Limit State

In each of these cases, there is a critical safe 
state on the borderline between safety and 
failure.  This borderline state is called a limit 
state.

Mathematical representation of a limit state is a 
limit state function.

Limit state function can be simple or very 
complex, depending on load and resistance 
parameters, dimensions, time and so on. 



Example of a Limit State Function

Let R be the moment carrying capacity (or 
resistance) and Q be the load effect.  Then, the 
limit state function can be formulated as

g = R – Q = 0

If g < 0 or R < Q, the limit state is exceeded 
and the structure fails, otherwise the structure 
is safe.



Probability of Failure

Then the probability of failure, PF, 

PF =  P (g < 0) =  P (R < Q)



Limit State Function for a Steel Beam

The limit state function for a compact steel beam

g = Zx Fy – D – L - W = 0

where Zx = plastic section modulus, Fy = yield 
stress, D = dead load, L = live load, W = wind load

If g < 0, the limit state is exceeded and the 
structure fails, otherwise the structure is safe.



Types of Limit States

Four limit states are considered:

 Ultimate Limit States, ULS

 Serviceability Limit States, SLS

 Fatigue Limit States

 Extreme Events Limit States



Ultimate Limit States

Related to loss of the load carrying capacity

 Exceeding the moment carrying capacity

 Formation of a plastic hinge

 Crushing of concrete in compression

 Shear failure of the web in a steel beam

 Loss of the overall stability

 Buckling of flange/web

 Weld rupture



Serviceability Limit States

Related to performance of the function

▪ Cracking of concrete

▪ Deflection

▪ Vibration

▪ Permanent Deformations



Serviceability Limit States

Cracking

What is acceptable with regard to cracking? Are 
acceptable cracks limited by size? Length? Width?



Serviceability Limit States

Deflection

 The acceptable limits are subjective, depend on 
human perception.

 A building with a visible deflection is not 
acceptable, even though the structure can be 
structurally safe.

 For a bridge, limit deflection due to live load is 
L/800, where L is the span length.



Serviceability Limit States

Vibration

 Difficult to quantify

 In a building, the occupants cannot tolerate an 
excessive vibration

 For bridges, shaking can be tolerated if no 
pedestrians are involved



Serviceability Limit States

Important questions:

 What is acceptable vibration/deflection?

 How frequently can those limits states be 
exceeded?

 How to measure vibrations?



Serviceability Limit States

Permanent deformation

 Accumulation of permanent deflection can lead to 
serviceability problems



Fatigue Limit States

 Related to the accumulation of damage and 
eventual failure under repeated loads

 Structural member can fail under loads at the level 
lower the ultimate load

 Formulation of fatigue limit state for structural steel and 
reinforced concrete

 Acceptability criteria

 Practical design and evaluation criteria



Extreme Events Limit States

 Earthquake

 Collision (vehicle or vessel)

 Flood

 Hurricane

 Tornado

 Act of terrorism



Limit State Function

All realizations of a structure can be put into 
one of the two categories

 Safe (load effect ≤ resistance)

 Failure (load effect > resistance)

Each limit state is associated with a certain 
limit state function.



Limit State Function

 The state of the structure can be described using 

parameters, X1, …,Xn where Xi’s are load and 

resistance parameters

 A limit state function is a function g(X1,…,Xn) of these 

parameters, such that

g(X1,…,Xn) ≥ 0 for a safe realization

g(X1,…,Xn) < 0 for failure



Probability of Failure and 
Reliability Index b

Q = load and R = resistance 



Fundamental case
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Fundamental case
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Fundamental case
From the previous limit state function, g = R - Q, the 

probability of failure, PF, can be derived considering 

the PDF’s of R and Q



Fundamental case
The structure fails when the load exceeds the 
resistance, then the probability of failure is equal to 
the probability of Q>R, the following equations 
result

P P R r Q r P Q R R r P R rf i i i i       ( ) ( | ) ( )

 P F r f r dr F r f r drf Q i R i i Q i R i i    








1 1( ) ( ) ( ) ( )

P P Q q R q P R Q Q q P Q qf i i i i       ( ) ( | ) ( )

P F q f q dqf R i Q i i 




( ) ( )

Too difficult to use, therefore, other procedures are used



Cornell Reliability Index
Depending on complexity of g function, it can be 
very difficult to calculate the probability of failure, PF, 

PF =  P (g < 0) 

Cornell (1968) proposed to measure reliability in 
terms of the reliability index, b,

b = mg/sg

where  mg = mean of g and  sg = standard deviation 
of g



Reliability Index, b
If the limit state function g = R – Q, where R and Q are 
independent random variables, then 

mg = mg - mQ

sg 
2 = sR

2 + sQ
2

where mR = mean resistance, mQ = mean load, sR = 
standard deviation of resistance, sQ = standard 
deviation of load



Reliability Index, b
The reliability index can be calculated using the 
following formula (Cornell 1968)

where mR = mean resistance, mQ = mean load, sR = 
standard deviation of resistance, sQ = standard 
deviation of load
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Reliability Index, b
If R and Q are independent normal random variables 
then g = R – Q is also a normal random variable and

PF = P(g<0) = F[(0- mg)/sg] 

PF = F (- mg/sg) = F (-b)



Reliability Index, b
If R and Q are independent normal random variables 
then the reliability index calculated using Cornell’s 
formula (Cornell 1968)

is related to the probability of failure as follows,

b = - F-1 ( Pf )       or      Pf = F (- b )
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Reliability Index
 Relationship between b and Pf

Pf b

10-1 1.28

10-2 2.33

10-3 3.09

10-4 3.71

10-5 4.26

10-6 4.75

10-7 5.19

10-8 5.62

10-9 5.99



Reliability Index n-Dimensional Case
 Let’s consider a linear limit state function

g (X1, X2, …, Xn) = a0 + a1 X1 + a2 X2 + … + an Xn

 Xi = uncorrelated random variables, with unknown types of 
distribution, but with known mean values and standard deviations 

 Then, the reliability index, b, can be calculated as follows,
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Second Moment Reliability Index

The reliability index, b, depends on mXi and si only (it does

not depend on the type of distribution). Therefore, this b

is called a second moment measure of structural safety, 

because only the two first moments (mean and variance) 

are required. This formula is exact when all Xi are normal. 

Otherwise, it is only an approximation. 
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Reliability Index for a Non-linear Limit State Function

 Let’s consider a non-linear limit state function

g (X1, …, Xn) 

 Xi = uncorrelated random variables, with unknown types of 
distribution, but with known mean values and standard 
deviations 

 Then, the limit state function can be linearized using a 
Taylor series expansion

where the derivatives are calculated at (X1
*, …, Xn

*) 
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First Order, Second Moment, Reliability Index

where 
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First Order, Second Moment, Mean Value 
Reliability Index

where

The Taylor series expansion is calculated 
about the mean values.
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Reliability Index
This reliability index is called a first order, second moment, 
mean value, reliability index.  

 first order because we use first-order terms in the 
Taylor series expansion

 second moment because only means and variances are 
needed

 mean value because the Taylor series expansion is 
about the mean values 



Example

 Consider the following beam



Example (continued)

Consider the simply-supported beam which is 12 ft long.  

The beam is subjected to uniformly distributed dead, live, 

and wind loads.  The mean moment carrying capacity of the 

beam is 100 k-ft, and the coefficient of variation of the 

capacity is 13%.  Calculate the probability of failure for the 

beam.  Assume all random variables are normally distributed 

and uncorrelated



Example (continued)

For the loads

load mean s

dead 0.95 k/ft 0.1 k/ft

live 1.5 k/ft 0.2 k/ft

wind 0.6 k/ft 0.12 k/ft



Example (continued)

The resistance in this case is the moment 
carrying capacity of the beam

mR = mM = 100 k-ft

VR = VM = 0.13

sR = VRmR = (100)(0.13) = 13 k-ft



Example (continued)

The limit state equation is 

g = R - (MD+ML+MW) 

where MD, ML, and MW represent the midspan
moments caused by dead load, live load, and wind 
load, respectively.



Example (continued)

Substituting these expressions into the limit state 
equation and substituting L = 12 feet, we get

feet12L
8

Lw
M

8
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8

Lw
M

2

W
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2
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)www(18Rg WLD 



Example (continued)
 Since the limit state equation is linear, and all 

variables are normally distributed and 
uncorrelated, to find b, we can use:
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Example

Consider a reinforced concrete beam 



Example (continued)

The moment-carrying capacity of the section 
is calculated using
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Example (continued)

The limit state function is

where Q is the moment (load effect) due to the 
applied load.  The random variables in the 
problem are Q, fy, fc, and As.  
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Example (continued)
The distribution parameters and design parameters are given

l is the bias factor (ratio of mean value to nominal value).  The 
values of d and b are assumed to be deterministic constants.  

Calculate the reliability index, b.

mean nominal l s V

fy 44 ksi 40 ksi 1.10 4.62 ksi 0.105

As 4.08 in2 4 in2 1.02 0.08 in2 0.02

fc

Q

3.12 ksi

2052 k-in

3 ksi

2160 k-in

1.04

0.95

0.44 ksi

246 k-in

0.14

0.12



Example (continued)

For this problem, the limit state function is nonlinear.  The 
Taylor expansion about the mean values yields the following 
linear function:
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Example (continued)
To calculate b, the partial derivatives must be determined and 
the limit state function must be evaluated at the mean values 
of the random variables:
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Example (continued)

So, substituting these results into the equation of b we get
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Comments on the First-Order, Second Moment 

Mean Value, Reliability Index

The mean value second moment method is based on 
approximating non-normal CDF’s of the state variables by 
normal variables, for the simple case in which g(R, Q) = R - Q.  
The method has both advantages and disadvantages in the 
structural reliability analysis

 Easy to use.
 Does not require knowledge of the distributions of the 

random variables.
but

 Inaccurate results if the tails of the distribution functions 
cannot be approximated by a normal distribution.

 Invariance problem: the value of the reliability index 
depends on the specific form of the limit state function. 



Comments on the First-Order, Second 
Moment Mean Value, Reliability Index



Comments on the First-Order, Second Moment 
Mean Value, Reliability Index

The calculation of the First Order, Second 
Moment, Mean Value Reliability Index 
depends on the formulation of the 
problem



Example

Consider the steel beam



Example (continued)

The steel beam is assumed to be compact with parameters Z 
(plastic modulus) and yield stress Fy.  There are four random 
variables to consider: P, L, Z, Fy.  It is assumed that the four 
variables are uncorrelated.  The means and covariance matrix 
are given as
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Example (continued)

 C

kN

x m

x m

x kN m

X 























4 0 0 0

0 10 10 0 0

0 0 400 10 0

0 0 0 10 10

2

3 2

12 6

9 2 2( / )



Example (continued)

To begin, consider a limit state function in terms of 
moments.  We can write

g Z F P L ZF
PL

y y1
4

( , , , )  



Example (continued)
Now, recall that the purpose of the limit state function is to 
define the boundary between the safe and unsafe domains, 
and the boundary corresponds to g = 0.  So, if we divide g1

by a positive quantity (for example, Z), then we are not 
changing the boundary or the regions in which the limit state 
function is positive or negative.  So, an alternate limit state 
function (with units of stress) would be

g Z F P L F
PL

Z

g Z F P L

Z
y y
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4
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Example (continued)
 Since both functions satisfy the requirements for a 

limit state function, they are both valid.  Now let’s 
calculate the reliability index for both functions

 For g1, since it is nonlinear, the limit state function is 
linearized about the means.  The results are
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Example (continued)

For g2, which is also nonlinear, again linearize about the 
mean values.  The results are
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Example - Conclusion

This example clearly demonstrates the “invariance” in the 
mean value second moment reliability index.  In this example, 
the same fundamental limit state forms the basis for both limit 
state functions.  Therefore, the probability of failure (as 
reflected by the reliability index) should be the same.  It is 
possible to remove the invariance problem, and this is 
discussed in the next section.



Hasofer-Lind Reliability Procedure

Calculate b for a given limit state function g(X1, X2, ...,Xn) 

where the random variables Xi are all uncorrelated.  If the 

variables are correlated, then a transformation can be used 

to obtain uncorrelated variables. It is assumed that CDF’s are 

not available.  For a linear limit state function, use Cornell’s 

formula.  
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Hasofer-Lind Reliability Index

Consider a limit state function g(X1, X2, ...,Xn) where the 
random variables Xi

Each variable Xi has a corresponding reduced variable (or 
standard form) Zi, such as

So    Xi = mxi + Zi sxi

Z
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Hasofer-Lind Reliability Index

Replace Xi in the limit state function g(X1, X2, ...,Xn) with

Xi = mxi + Zi sxi

So the new limit state function is

g (Z1, … Zn) = 0 

Find b as the shortest distance from (0,…0) to g(Z1, … 
Zn)=0 in the reduced variable space



Hasofer-Lind Reliability Index

 The big change comes if the limit state function 
is nonlinear.  

 Then, iterations are required to find the design 
point {z1*, z2*,...,zn*} in reduced variable space 
such that b still corresponds to the shortest 
distance 



Hasofer-Lind Reliability Index



Hasofer-Lind Reliability Index



Hasofer-Lind Reliability Index



Hasofer-Lind Reliability Index
The iterative procedure requires us to solve a set of (2n+1) 
simultaneous equations with (2n+1) unknowns: 

 b, a1, a2, ..., an, 

 z1*, z2*, ..., zn* 

where
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Hasofer-Lind Reliability Index

There are two alternative procedures 
presented below for performing the iterative 
analysis.  They will be identified as the 
“simultaneous equation” procedure and the 
“matrix” procedure.  The steps in each 
procedure are summarized below.



Hasofer-Lind Reliability Index
 Simultaneous Equation Procedure:

1. Formulate the limit state function g(X1,..., Xn) 
= 0 and appropriate parameters for all 
random variables involved.

2. Express the limit state function in terms of 
reduced variables Zi, by replacing all Xi with 

(mi + Zi si)

3. Express the limit state function in terms of b
and ai by replacing all Zi with ai b

4. Express each ai as a function of all ai and b.



Hasofer-Lind Reliability Index
Calculate ai

5. Initial cycle:  Assume (guess) numerical values 
of b and all ai. It is convenient to start with 

a1 = … = ai = … = an.

a









i

i

k
k

n

g

Z

g

Z






















evaluated at design point

evaluated at design point
1

2



Hasofer-Lind Reliability Index

6. Solve the 2n+1 simultaneous equations for b
and ai.

7. Iterate until the b and ai values converge.

a









i

i

k
k

n

g

Z

g

Z






















evaluated at design point

evaluated at design point
1

2

g z z zn( , ,..., )* * *
1 2 0

z i i
*  ba



Hasofer-Lind Reliability Index
 Matrix Procedure:

1. Formulate the limit state function and appropriate 
parameters for all random variables Xi (i = 1,2,...,n) 
involved.

2. Obtain an initial design point {xi*} by assuming values 
for n-1 of the random variables Xi.  (Mean values are 
often a reasonable initial choice.)  Solve the limit state 
equation g = 0 for the remaining random variable.  
This ensures that the design point is on the failure 
boundary.

3. Determine the reduced variables {zi*} corresponding 
to the design point {xi*} using 

z
x

i

i X

X

i

i

*

*


 m

s



Hasofer-Lind Reliability Index
4. Determine the partial derivatives of the limit state 

function with respect to the reduced variables.  For 
convenience, define a column vector {G} as the vector 
whose elements are these partial derivatives multiplied 
by -1, i.e.,

5. Calculate an estimate of b using the following formula:

 G

G

G

G n














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








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
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
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
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Hasofer-Lind Reliability Index
6. Calculate a column vector containing the 

sensitivity factors using

7. Determine a new design point in reduced 
variables for n-1 of the variables using

8. Determine the corresponding design point values 
in original coordinates for the n-1 values in Step 
7 using

{ }
{ }

{ } { }
a 

G

G GT

zi i
*  a b

x zi X i Xi i

* * m s



Hasofer-Lind Reliability Index

9.  Determine the value of the remaining 
random variable (i.e., the one not found 
in steps 7 and 8) by solving the limit 
state equation g = 0.

10. Repeat steps 3-9 until b and the design 
point {xi*} converge.



Example
 Calculate the Hasofer-Lind reliability index for 

the 3-span continuous beam shown

 To solve the problem, we will follow the steps 
in the simultaneous equation procedure



Example (continued)
 The random variables in the problem are: 

 distributed load (w), 

 span length (L), 

 modulus of elasticity (E), 

 moment of inertia (I).  

The limit state to be considered is deflection, and the 

allowable deflection is specified as L/360.  The maximum 

deflection is 0.0069 wL4/EI, and it occurs at 0.446L from 

either end (AISC, 1986).  The limit state function is

EI

wL
0069.0

360

L
)I,E,L,w(g

4





Example (continued)

Means and standard deviations of the random 

variables

variable mean standard deviation

w 10 kN/m 0.4 kN/m

L 5 m ~ 0

E 2x107 kN/m2 0.5x107 kN/m2

I 8x10-4 m4 1.5x10-4 m4



Example (continued)

 Express g as a function of reduced variables.  First, 
substituting some numbers, g can be expressed as

 Define the reduced variables

g EI w EI w      0
5

360
5 0 040.0069 310.5( )

Z
I

Z
E

Z
wI

I

E

E

w

w

1 2 3






m

s

m

s

m

s
; ;

I Z E Z w ZI I E E w w     m s m s m s1 2 3; ;



Example (continued)
 Substitute into g

 Formulate g in terms of b and a

    

    

m s m s m sE E I I w wZ Z Z

x Z x x Z x Z

Z Z Z Z Z

    

    

    

 

2 1 3

7

2

7 4

1

4

3

1 2 1 2 3

0

2 10 05 10 8 10 15 10 10 0

0

310.5

310.5 0.4

(3000) 4000 750 124.2 12895

( . ) ( . ) ( )

( ) ( ) ( )

z i i

* 



    

ba

ba ba b a a ba3000 4000 750 124.2 128951 2

2

1 2 3 0

b
a a ba a ba




  

12895

3000 4000 750 12421 2 1 2 3.



Example (continued)

 Calculate ai values

a
ba

ba ba
1

2

2

2

1

2 2

3000 750

3000 750 4000 750 1242


 

    

( )

( ) ( ) ( . )

a
ba

ba ba
2

1

2

2

1

2 2

4000

3000 750 4000 750 1242


 

    

( )

( ) ( ) ( . )

750

a
ba ba

3

2

2

1

2 23000 750 4000 750 1242


 

    

( )

( ) ( ) ( . )

124.2



Example (continued)

 The iterations start with a guess for b, a1, a2, a3.  For 
example, let's start with

a a a1 2 30333 058 0333 058      . . ; . .

and let b = 3 



Example (continued)
 The iterations are summarized.  Notice that between 

iterations 5 and 6, the values change very little, so the 
solution has converged.  Faster convergence occurs when 
the correct signs for the ai's are used  (+ for load, - for 
resistance) 

Initial Guess Iteration #

1 2 3 4 5 6

b 3 3.664 3.429 3.213 3.175 3.173 3.173

a1 -0.58 -0.532 -0.257 -0.153 -0.168 -0.179 -0.182

a2 -0.58 -0.846 -0.965 -0.988 -0.985 -0.983 -0.983

a3 +0.58 0.039 0.047 0.037 0.034 0.034 0.034

So, the calculated reliability index is approximately 3.17 



Reliability Analysis Methods

 Linear limit state function

 All normal random variables – use Cornell’s formula –
result is exact

 Some are non-normal random variables - use Cornell’s 
formula – result is approximated

 Some are non-normal random variables – use Rackwitz-
Fiessler procedure – results are close to exact

 Non-linear limit state function

 Use Hasofer-Lind procedure

 Any type

 Use Monte Carlo simulations – accuracy depends on 
number of runs

 Use Rosenblueth 2n+1 method – approximate method, 
recommended when each run takes a long computer time



RACKWITZ-FIESSLER PROCEDURE

A procedure to calculate a reliability index when some 
of the random variable are not normal.  The 
cumulative distribution functions must be known for 
all the variables involved.

The basic idea:
Replace each non-normal random variable with a 
normal variable such that CDF and PDF are the same 
for replaced and replacing variables at the so called 
“design point”.  Coordinates of the design point are 
found in iterations.



RACKWITZ-FIESSLER PROCEDURE - Steps

1. Guess coordinates of the design point (you can 
start with mean values) 

2. Replace non-normal variables with normal such 
their CDF and PDF are the same at the design 
point.

3. Calculate b using Cornell’s formula (for a linear 
limit state function)

4. Calculate coordinates of the new design point.

5. Go to step 2. Stop when the required accuracy is 
reached.



Mean and s of approximating normal distribution
Suppose that a particular random variable X with mean mX and 
standard deviation sX is described by a cumulative distribution 
function FX(x) and a probability density function fX(x) 

To obtain the “equivalent normal” mean mX
e and standard 

deviation sX
e, we require that the CDF and PDF of the actual 

function be equal to the normal CDF and normal PDF at the 
value of the variable x* on the failure boundary described by g 
= 0.  

Mathematically, these requirements are expressed as

F x
x

X

X
e

X
e

( )*

*





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


F
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s
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x
X

X
e

X
e

X
e

( )*

*












1

s


m
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RACKWITZ-FIESSLER PROCEDURE
 Suppose that a particular random variable X with 

mean mX and standard deviation sX is described by a 
cumulative distribution function FX(x) and a 
probability density function fX(x) 

 To obtain the “equivalent normal” mean mX
e and 

standard deviation sX
e, we require that the CDF and 

PDF of the actual function be equal to the normal 
CDF and normal PDF at the value of the variable x* 
on the failure boundary described by g = 0.  

 Mathematically, these requirements are expressed as

F x
x
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X
e
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e
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
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RACKWITZ-FIESSLER PROCEDURE

By manipulating these equations :

  m sX
e

X
e

Xx F x  * *( )F 1

  s 
m

s
X

e

X

X
e

X
e

X

X
f x

x

f x
F x









  

1 1
1

( ) ( )
( )

*

*

*

*F



RACKWITZ-FIESSLER PROCEDURE

Two Uncorrelated Variables
1.  Let the limit state function be g = R – Q.  The design 

point (R*, Q*) on the safety boundary, so R* = Q*.

2.  Guess an initial value of R*, between mR and mQ.  

Then Q* = R*.

3.  Approximate FR and FQ by normal FR
e and FQ

e such that, 

fR
e(R*) = fR(R*)

FR
e(R*) = FR(R*)

fQ
e(Q*) = fQ(Q*)

FQ
e(Q*) = FQ(Q*)



RACKWITZ-FIESSLER PROCEDURE

4. Calculate the mean and s of the approximating normal 
distributions

   
 *Qf

*QF

Q

Q

1
e

Q

F
s

   
 *Rf

*RF

R

R

1
e

R

F
s

  *RF*R R

1e

R

e

R

Fsm

  *QF*Q Q

1e

Q

e

Q

Fsm



RACKWITZ-FIESSLER PROCEDURE
5. Calculate b for the approximating normal distributions

6.  Calculate the new design point

   2e

Q

2e

R

e

Q

e

R

ss

mm
b

 

   2e

Q

2e

R

2e

Re

R*R
ss

sb
m

 

   2e

Q

2e

R

2e

Qe

Q*Q
ss

sb
m

7. Go to step 2, and repeat the calculations until bnew = bold



How to Determine Load and 
Resistance Factors?

 If failure is to occur – what are the 
most likely values of load and 
resistance?

 These values are the coordinates of 
the so called “design point”



Fundamental case
 Space of State Variables

Q

FQ, R

Limit state function: g=R-Q

μQ
(μR, μQ)

μR

R

Q*

R*

Design point



Design Point - Load



Design Point - Resistance







RACKWITZ-FIESSLER PROCEDURE

 Matrix Procedure :
1. Formulate the limit state function.  Determine the 

probability distributions and appropriate parameters for 
all random variables Xi

2. Obtain an initial design point {xi*} by assuming values for 
n-1 of the random variables Xi.  (Mean values are often a 
reasonable choice.)  Solve the limit state equation g = 0 
for the remaining random variable.  This ensures that 
the design point is on the failure boundary.

3.  For each of the design point values xi* corresponding to a 
non-normal distribution, determine the equivalent 
normal mean  and standard deviation.  If one or more 
xi* values correspond to a normal distribution, then the 
equivalent normal parameters are simply the actual 

parameters.



RACKWITZ-FIESSLER PROCEDURE

4. Determine the reduced variables {zi*} corresponding 
to the design point {xi*} using

5. Determine the partial derivatives of the limit state 
function with respect to the reduced variables. 
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RACKWITZ-FIESSLER PROCEDURE
6. Calculate an estimate of b using the following formula

For a linear limit state function

b 
{ } { }

{ } { }

*G z

G G

T

T  z

z

z

z n
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
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e
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RACKWITZ-FIESSLER PROCEDURE

7. Calculate a column vector containing the sensitivity 
factors using

8. Determine a new design point in reduced variables 
for n-1 of the variables using

9. Determine the corresponding design point values in 
original coordinates for the n-1 values in Step 7 
using

{ }
{ }

{ } { }
a 

G

G GT

zi i
*  a b

x zi X
e

i X
e

i i

* * m s



RACKWITZ-FIESSLER PROCEDURE

10. Determine the value of the remaining random 
variable (i.e., the one not found in steps 8 and 9) 
by solving the limit state function g = 0.

11. Repeat steps 3-10 until b and the design point {xi*} 
converge.



Example
 The modified matrix procedure is demonstrated on a 

simple case of two uncorrelated variables.  Let R be 
the resistance and Q be the load effect.  The limit 
state function is

g(R, Q) = R - Q

R lognormally distributed mR = 200 and sR = 20. 

Q extreme Type I distribution mQ = 100 and sQ = 12. 

Objective = calculate b



Example (continued)
1.   Formulate limit state function and cumulative 

distribution functions. 

2. Initial design point :  Try r* = 150 - arbitrary guess

From the limit state equation g = 0, q* = 150

3. Determine equivalent normal parameters

s
s

m
s

m m s

ln ln

ln ln

ln . .

ln( ) . .

R

R

R

R

R R R

x2

2

2

3

2

1 995 10 0 0998

05 529

 








   

  



s sR

e

Rr  *

ln (150)(0.0998) 15.0

 

 

m mR

e

Rr r  

  



* *

lnln( )1

192

(150) 1 ln(150) 5.29



Example (continued)
Q : extreme type I distribution

a and u  are distribution parameters related to the 

mean and standard deviation of Q

Plugging in the values of mQ and sQ, we find a=0.107 and u=94.6.

  

     

F q a q u

f q a a q u a q u

Q

Q

( ) exp exp ( )

( ) exp ( ) exp exp ( )

   

     

u
a

aQ

Q

  m


s

05772

6

2

2

.
;

F q f q xQ Q( ) . ; ( ) .* *  0997 286 10 4



Example (continued)

4. Determine the values of the reduced variables 

z1* : reduced variable for r* 

z2* : reduced variable for q* 

     s  Q
e

Q

Q
f q

F q
x

  




1 1

286 10
0997 2891

4

1

( )
( )

.
. .

*

*F F

  m sQ
e

Q
e

Qq F q  * *( ) .F 1 695

z
r

z
q

R
e

R
e

Q
e

Q
e1 2283 2 78*

*

*

*
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Example (continued)

5. Determine the {G} vector

6. Calculate an estimate of b. 

   

G
g

Z

g

R
z x

R
e

R
e

i i

1

1

1     







s s

* *

   
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Example (continued)
7. Calculate {a}:

8. Determine new values of zi* for n-1 of the variables.  
For example

9. Determine r* using the updated z1*:

10. Determine the value of q* using the limit state 
equation g = 0.  For this case, q* = r* = 166

{ }
{ }

{ } { }

.

.
a  









G

G GT

0460

0888

z1 1 0460 378 174* ( . )( . ) .    a b

r zR
e

R
e* *  m s1 166



Example (continued)

11. Iterate until the value of b and the design point converge

Iteration #

1 2 3

r* 150 166 168

q* 150 166 168



b 3.78 3.76 3.76



r* 166 168 168

q* 166 168 168



RACKWITZ-FIESSLER PROCEDURE
GRAPHICAL PROCEDURE

 Can be applied when the CDFs of the basic variables are 
available as plots on normal probability paper.  

 Each non-normal variable is approximated by a normal 
distribution, which is represented by a straight line. 

 The value of the CDF of the approximating normal 
variable is the same at the design point as that of the 
original distribution.  

 On normal probability paper this means that the straight 
line intersects with the original CDF at the design point. 

 Since the PDF is a tangent (first derivative) of the CDF, 
the straight line (approximating normal) is tangent to the 
original CDF at the design point.  

 The parameters of the approximating normal distribution 
(mean and standard deviation) can be read directly from 
the graph.



RACKWITZ-FIESSLER PROCEDURE
GRAPHICAL PROCEDURE
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R – Lognormal
Q – Extreme Type I



EXAMPLE

We will demonstrate the calculation of the reliability index 
using the graphical procedure for the limit state function

g (R, Q) = R - Q

where

R = variable representing resistance 

Q = variable representing the load effect

The CDF’s for R and Q are plotted on normal probability paper



EXAMPLE 
continued



EXAMPLE 
(continued)

Basics steps for the graphical 
procedure

1. Guess the initial value of 
the design point, e.g. 
assume r* = q* = 50 ksi.  
Mark points A and B on 
the plots of FR and FQ, 
respectively

2.     Plot tangents to FR and FQ

at A and B

3. Read  directly from the 
graph

m s

m s

R

e

R

e

Q

e

Q

e

 

 

56 ksi 3.5 ksi

14 ksi 14.5 ksi



EXAMPLE 
(continued)

4. Calculate b

5.     Calculate new design point. 

The value of q* is found from the 

requirement g = 0.  Therefore, 

q* = r*. 

   
b

m m

s s












R

e

Q

e

R

e

Q

e
2 2 2 2

56 14
282

( ) ( )
.

3.5 14.5

 
r R

e R

e

*

( ) ( )

( ) ( )

( ) ( )
 


 


m

s b

s s

2

2 2

2

2 2
56

R

e

Q

e

3.5 2.82

3.5 14.5
53.7 ksi



EXAMPLE 
(continued)
6. Plot tangents to FR and FQ at C and D 
using the updated design point.

7. Read  directly from the graph 

8. Calculate new b and design point, 

r* = q* = 53.6 

9. The process would continue 
until b converges to a value

m s

m s

R

e

R

e

Q

e

Q

e

 

 

61 ksi 6.5 ksi

11.5 ksi 15.5 ksi

b  2.94



RACKWITZ-FIESSLER PROCEDURE
CORRELATED RANDOM VARIABLES

 So far, we have considered limit state equations in 
which the random variables are all uncorrelated. 

 However, in many practical applications, some of the 
random variables may be correlated, and this 
correlation can have a significant impact on The 
calculated reliability index.

 To deal with correlated random variables, we can 
take two approaches:



RACKWITZ-FIESSLER PROCEDURE
CORRELATED RANDOM VARIABLES

1. Use a coordinate transformation.  This approach 
can become messy when dealing with the 
Rackwitz-Fiessler procedure involving equivalent 
normal parameters.

2.   Modify the procedure presented by introducing a 
correlation matrix [r].  The correlation matrix [r] is 
the matrix of correlation coefficients for the random 
variables involved in the limit state equation.  The 
modified equations are as follows:

changes to

changes to

b 
{ } { }

{ } { }

*G z

G G

T

T  
b

r


{ } { }

{ } { }

*G z

G G

T

T

{ }
{ }

{ } { }
a 

G

G GT

 

 
{ }

{ }

{ } { }
a

r

r


G

G GT



EXAMPLE

 Calculate the reliability index, b, for the limit state 
function 

g(X1, X2) = 3X1 - 2X2

Cov (X1, X2) = 2.0.  

We don’t have any information on the distributions of X1

and X2, so we will assume they are both normally 
distributed.

m s

m s

X X

X X

1 1

2 2

16 6 2 45

188 283

 

 

. ; .

. ; .



EXAMPLE (continued)

1. Formulate limit state function and probability 
distributions. 

2. Guess an initial design point.  We will assume a 
value for x1* of 17.  From g = 0, x2*= 25.5.

3. Determining equivalent normal parameters is not 
necessary since we are assuming both variables are 
normally distributed

4. Determine the values of the reduced variables

5. Determine the {G} vector

z z1 20163 237* *. ; . 

   

G
g

Z

g

X
z x

X X

i i

1

1 1
1 1

3     







s s

* *

( )

   

G
g

Z

g

X
z x

X X

i i

2

2 2
2 2

2    







s s

* *



EXAMPLE (continued)
6.  Calculate an estimate of b

7.  Calculate {a}:

 r
s s

s s








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

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
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
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1
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1

1 0288
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1 2
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1 2
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EXAMPLE (continued)
8.  Determine new values of zi* for n-1 of the variables

9.  Determine the value of x1* using the value of z1*:

10.  Determine the value of x2* using the limit state 
equation g = 0. 

11. Iterate until the value of b and the design point 
converge.  

z1 1 0726 155* ( . )( . )    a b 1.13

x zX X1 11 1
138* * .  m s

x2*= 20.7 



EXAMPLE (continued)
Results (correct answer after one iteration)

Iteration #

1 2

x1
* 17 13.8

x2
* 25.5 20.7



b 1.55 1.55



x1
* 13.8 13.8

x2
* 20.7 20.7



Reliability Analysis 
using Monte Carlo Method

 Given limit state function:

g = g (x1, x2, …xn)

where X1, X2, …Xn are random variables

 for each Xi, CDF is Fxi (x)



Reliability Analysis Procedure
1. For each random variable X1, X2 , …, Xn

generate values of x1, x2 , …, xn

2. Calculate

g = g (x1, x2, …xn)

3. Repeat steps 1 and 2, M times, resulting 
in M values of g: g1, g2, …gM

4. Determine the probability of failure, Pf, 

and reliability index, b



Probability of Failure, Pf, 
and Reliability Index, b

Option (a)

Count the number, m, of negative values of 
g,

calculate

Pf = m/M

b = - F1(Pf)

For accurate results, m should be ≥ 10



Probability of Failure, Pf, 
and Reliability Index, b

Option (b)

Plot CDF of g on the normal probability paper
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Probability of Failure, Pf, 
and Reliability Index, b

Option (c)
If CDF of g is too short then either increase 
M or extrapolate
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Reliability Analysis using 
Monte Carlo Method - Example

 Calculate Pf and b

 Given limit state function:

g (R,D,L) = R – (D + L)



Reliability Analysis using 
Monte Carlo Method - Example

 Given:
 Dead load, normally distributed

 D = 75 k-ft 

 lD = 1.03

 vD = 0.10

 Live load, normally distributed
 L = 110 k-ft 

 lL = 0.80

 vL = 0.14

 Resistance, lognormally distributed
 L = 255 k-ft 

 lR = 1.11

 vR = 0.12

 Assume D, L, R are uncorrelated random variables



Calculate mean values and standard deviations

 Dead load
mD = D lD = 77.25 k-ft
sD = mD VD = 7.73 k-ft

 Live load
mL = L lL = 88.00 k-ft
sL = mL VL = 12.32 k-ft

 Resistance
mR = R lR = 283.05 k-ft
sR = mL VR = 33.97 k-ft
mln(R) = ln(mX) = 5.65 k-ft
sln(X)

2 = VR
2 = 0.0144 

sln(X) = 0.12 k-ft



Monte Carlo Simulation Results
(18 out of 500 runs in this example)

125.09298.390.45150.6741999.640.94470.8275873.66-0.46530.3208418

155.45300.120.50270.6924070.61-1.41160.0790374.06-0.41270.3399117

150.70327.041.29500.9023491.680.29860.6173884.660.95860.8311216

137.41290.820.22880.5904977.35-0.86470.1936176.07-0.15320.4391115

142.03303.390.59870.7253284.89-0.25270.4002576.47-0.10080.4598714

68.58250.31-0.96400.16753111.951.94440.9740769.77-0.96840.1664113

147.15305.020.64670.7410987.48-0.04260.4830370.39-0.88750.1873912

112.90270.46-0.37070.3554475.84-0.98710.1617981.720.57820.7184211

44.37208.83-2.18520.0144496.220.66750.7477768.23-1.16760.1214810

122.80290.140.20880.5827192.140.33610.6316175.20-0.26490.395539

115.41284.750.04990.5199197.790.79500.7866971.55-0.73840.230128

78.02239.40-1.28510.0993877.61-0.84370.1994183.770.84440.800787

149.95304.350.62710.7347081.27-0.54610.2925073.12-0.53410.296646

134.88288.580.16280.5646781.79-0.50440.3069871.91-0.69120.244715

32.90205.06-2.29620.0108390.130.17280.5685982.030.61930.732134

162.31328.331.33310.9087587.16-0.06780.4729578.850.20730.582113

200.60373.212.65440.9960381.00-0.56780.2850791.611.85890.968482

130.30301.110.53170.7025293.180.42040.6629277.630.04860.519381

R-D-LRizirandomLizirandomDizirandomno
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112.90270.46-0.37070.3554475.84-0.98710.1617981.720.57820.7184211

44.37208.83-2.18520.0144496.220.66750.7477768.23-1.16760.1214810

122.80290.140.20880.5827192.140.33610.6316175.20-0.26490.395539

115.41284.750.04990.5199197.790.79500.7866971.55-0.73840.230128

78.02239.40-1.28510.0993877.61-0.84370.1994183.770.84440.800787

149.95304.350.62710.7347081.27-0.54610.2925073.12-0.53410.296646

134.88288.580.16280.5646781.79-0.50440.3069871.91-0.69120.244715

32.90205.06-2.29620.0108390.130.17280.5685982.030.61930.732134

162.31328.331.33310.9087587.16-0.06780.4729578.850.20730.582113

200.60373.212.65440.9960381.00-0.56780.2850791.611.85890.968482

130.30301.110.53170.7025293.180.42040.6629277.630.04860.519381

R-D-LRizirandomLizirandomDizirandomno



Monte Carlo Simulation Results
(18 out of 500 runs in this example)

-1.80000.035950.8718

-1.82590.033950.4017

-1.85310.031950.1616

-1.88170.029947.3015

-1.91190.027946.5514

-1.94400.025944.6313

-1.97820.024044.3712

-2.01490.022043.7111

-2.05460.020041.4510

-2.09770.018039.899

-2.14520.016034.098

-2.19810.014033.587

-2.25790.012032.906

-2.32710.010030.705

-2.40960.008028.474

-2.51280.006028.463

-2.65270.004021.902

-2.87880.0020-25.511

F-1[M/(M+1)]M/(M+1)R-D-Lno
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Results of Simulation: CDF’s of D, L and R
(500 runs)

simulated dates (Monte Carlo Distribution)
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Results of Simulation, g = R-D-L
(500 runs)

simulated dates (Monte Carlo Method) 

y = 0.0264x - 3.1048
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Results of Simulation: Pf and b
(500 runs)

Reliability index 

b = 3.10

Probability of failure 

Pf = F (-b) = 0.0010



simulated dates (Monte Carlo Method) 

y = 0.0279x - 3.1838
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Results of Simulation, g = R-D-L 
(50 runs)

b=3.18

extrapolation is needed



Results of Simulation: Pf and b 

(50 runs)

Reliability index 

b = 3.18

Probability of failure 

Pf = F (-b) = 0.0007


