Biomechanics of Brain Trauma

Martin Ostoja-Starzewski

Department of Mechanical Science & Engineering and Beckman Institute

> joint work with: Prof. Brad Sutton

Amit Madhukar, Ying Chen (@ Simulia), Marcus Slavenas (NCSA)

+

NSF

[Mary Jane Neer Fund for Research in Disability]

Blunt head trauma

- Causes: transportation accidents, falls, sports injury, blast exposure...
- ~1.4 million people each year, > \$56 billion a year, > 5 million disabled
- Injury mechanisms remain unclear
- Dynamics and ... fractal brain structure

Biomechanics of head injury

- What is the physical process producing head injury?
- What are stress wave patterns following the impact?
- Can set up a 3d finite element head model based MRI?
- How does an impact cause brain damage?
- Why does side impact cause more damage than frontal impact?
- Why does damage occur in other regions of the brain instead of right under the impact site?

MRI voxel-based finite element (FE) mesh

Axial view of the FE mesh (skull, cerebro-spinal fluid (CSF), grey matter, white matter)

Mesh smoothing (implemented through a custom C++ code)

Original brain mesh

Brain mesh after smoothing

MRI voxel-based finite element (FE) mesh

- Image voxels → 8-node brick FE (1.33 x 1.33 x 1.30 mm³)
- Image segmentation ... element tissue types

- Fine mesh able to capture stress wave propagation
- Patient-specific

Material properties

- homogeneous and isotropic
- skull and CSF: linear elastic
- brain: elastic in bulk behavior, linear viscoelastic in shear

Tissue	Density (kg/m ³)	Bulk modulus K (Pa)	Short term Shear modulus G_0 (Pa)	Long term shear modulus G_{∞} (Pa)	Decay Constant (sec ⁻¹)
Skull	2070	3.61E+9	2.7E+9		N/A
CSF	1004	2.19E+7	5.0E+4		N/A
Grey matter	1040	2.19E+9	3.4E+4	6.4E+3	400
White matter	1040	2.19E+9	4.1E+4	7.8E+3	400

$$G(t) = G_{\infty} + (G_0 - G_{\infty})e^{-\beta t}$$

MRI voxel-based FE mesh

MRI voxel-based FE mesh

Model validation: frontal impact

...based on experiments with 9 *ms* impact pulse with peak pressure of 4.37 *MPa* to frontal region

Impact force time history

[Nahum, A., Smith, R., Ward, C. "Intracranial pressure dynamics during head impact," 1977]

Results: intracranial pressure

Coup pressure time history

Contrecoup pressure time history

Pressure distribution on sagittal plane

Pressure and shear waves in the brain

- shear strain
- slow and spherically convergent shear waves which are potentially more damaging

Spherically convergent shear wave of shear stress

Free neck boundary condition

Fixed neck boundary condition

[Acta Mech., 2010]

S, Mises (Avg: 75%) + 2.000e+04 + 1.833e+04 + 1.657e+04 + 1.333e+04 + 1.157e+04 + 8.333e+03 + 6.657e+03 + 6.657e+04 + 6.657e+0400000000000000000000000
S, Mises (Avg: 75%) + 2.000e+04 + 1.633e+04 + 1.500e+04 + 1.107e+04 + 1.107e+04 + 1.107e+04 + 1.107e+04 + 1.000e+03 + 6.657e+03 + 6.657e+03
+3.3338+03 +1.6576+03 +0.000e+00

Free boundary condition at neck

S, Mises

+1.667e+0. +0.000e+00

side impact

Free neck boundary condition

Fixed neck boundary condition

side impact

*m*s

top impact *m*s *m*s *m*s

*m*s

*m*s

Incompressible Solid Elastic Constitutive Model of CSF

"Effect of cerebrospinal fluid modelling on spherically convergent shear waves during blunt head trauma," *Int. J. Num. Meth. Biomed. Eng.*, on line 2017. DOI: 10.1002/cnm.2881

Viscoelastic Constitutive Model of CSF

Long term shear modulus is set to zero, while short-term shear modulus is taken to be much smaller than bulk modulus

Fluid-like Elastic Constitutive Model

head drop device (HDD)

release mechanism for drop motion

HDD fits within Allegra 3 Tesla Head Coil Unit

From tagged MRI and harmonic phase (HARP) imaging analysis of an axial head drop experiment:

(A) tagged image at 100 ms

(B) time series of the central line of the image in (A)

(C) time series of HARP motion estimated images.

In a 2 *cm* head drop tissue in the brain center displaces 2-3 *mm* relative to the skull, with maximum strains 5-10%.

["Brain deformation under mild impact: Magnetic resonance imaging-based assessment and finite element study," special issue "Brain Neuro-Mechanics" of *Int. J. Num. Anal. Model. Ser. B* **3**(1), 20-35, 2012]

- MRI voxel-based 3D FE head model fast, accurate, patient-specific
- Validation against cadaver frontal impact experiment good correlations are found
- Fast pressure waves
- Slow and spherically convergent shear stress waves, ... potentially more damaging
- Such waves do not exist in all-fluid models of brain !
- *in vivo* human brain transient kinematics found by MRI
- Displacements predicted by FE model agree reasonably well with deformation estimated from image-based analysis
- ... first validation of an FE head injury model on in vivo brain deformation data

The surface of the brain, where the highest level of thinking takes place contains a hierarchical structure of folds.

A human (the most intellectually advanced "animal") has the most folded surface of the brain: **fractal dimension** D = 2.73 - 2.79.

Future/Ongoing Work

- Geometry: add structures such as membranes
- Boundary/interface conditions: head/neck, brain/skull
- Multiscale material properties: brain tissues (fractal material geometry and homogenization)
- Better rheological model of CSF
- Validation: more experimental data ... dynamic imaging on live subjects
- Collaboration with neurologists, clinicians
- Better continuum-type models/theories of fractal media ... to tackle fluid, solid problems

Tagging images of head drop.

Each image corresponds to the 10th time point (100 ms) of the drop.

2D displacements

Axial u_x

Axial

Υ

Sagittal

- X

Tagged MRI images

- 200 tagged images each series
- 10 ms temporal resolution

Axial slice

- Covering the first 2 seconds after the head drop
- MRI: multi-shot spiral acquisition, requiring only 12 drops

Sagittal slice

Image-based analysis vs. FE simulation – Axial Slice

33

Strain – Axial slice

Maximum strain: < 5%

Strain – Axial slice

(b) Maximum principal strain

Harmonic phase image analysis

2D displacements (cont.)

- First oscillation: 70*ms*-140*ms* Second oscillation: 150*ms*-200*ms*
- Maximum displacement: 2-3mm
- Larger displacement during the first oscillation

FE simulation of mild impact

- MRI voxel-based head mesh
- same material properties, interface condition
- friction coefficient between the human head and the rigid surface: 0.3
- boundary condition: fixed at head-neck junction

- Maximum strains occur in the first few milliseconds after impact during the first oscillation of the brain
- Strain exceeds 10% under moderate and severe impact during the initial time after the impact
- A reasonably good correlation was found between the displacement fields obtained through MRI-based HARP analysis and through the FE simulation