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Balance (conservation) 
laws of continuum mechanics

• mass
• linear momentum
• angular momentum
• energy

• second law of thermodynamics
( ) ( ) ( ) ( )with    / , 0.r i r iS S S S Q T S= + = ≥     
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reversible irreversible
provides restrictions 
on admissible forms 
of constitutive relations



Physics: entropy production may spontaneously be 
negative on short time and v. small space scales

• D.J. Evans, E.G.D. Cohen & G.P. Morriss (1993). Probability of second law 
violations in steady states, Phys. Rev. Lett. 71(15), 2401-2404

• D.J. Evans & D.J. Searles, D.J. (1994). Equilibrium  microstates which 
generate second law violating steady states, Phys. Rev. E 50(2), 1645-1648

• G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles & D.J. Evans (2002), 
Experimental demonstration of violations of the second law of 
thermodynamics for small systems and short time scales, Phys. Rev. Lett.
89, 050601

• D.J. Evans & D.J. Searles, D.J. (2002). The fluctuation theorem, Adv. Phys. 
51(7), 1529-1585

• C. Jarzynski (2011). Equalities and inequalities: Irreversibility and the 
second law of thermodynamics at the nanoscale, Annu. Rev. Condens. 
Matter Phys. 2, 329-51
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up to 3 sec. in cholesteric liquids…!



need to revise thermodynamics 
of continuum mechanics

Maxwell: “the second law is of the nature of 
strong probability … not an absolute certainty”
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• modify the Clausius-Duhem inequality
• stochastic continuum thermomechanics

- fluctuation theorem in place of 2nd law
- entropy = submartingale
- continuum mechanics axioms revisted

• applications in presence of 2nd law violations:
- acceleration wavefront
- stability of diffusion processes
- permeability of random media
- turbulence via micropolar fluid mechanics
- …

⇒
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Couette flow
molecular dynamics 
via LAMMPS:

y*
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Couette flow
molecular dynamics 
via LAMMPS:

y*

• Lennard-Jones potential
• Lees-Edwards boundary condition
• thermostatted system
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y* = 10

y* = 20 y* = 30

shear stress evolutions
for various channel heights
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autocorrelation of shear stress:

autocorrelation power spectral density

narrow-band random process
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Couette flow

fluctuations in time-averaged shear stress 
for a molecular system in Couette flow
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fluctuation theorem in place of 2nd law

an estimate of the relative probability of observing processes that have 
positive and negative total dissipation in non-equilibrium systems
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Couette flow

”In either the large system or long time limit the Steady State Fluctuation 
Theorem predicts that the Second Law will hold absolutely and that the 
probability of Second Law violations will be zero.” [Evans & Searles, 2002]



(2nd law axiom in conventional thermodynamics 
and continuum theories)

( ) ( ) ( )( )i is t t s t+ ∆ ≥

fluctuation theorem ⇒

in place of
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… which random process 
can model the entropy evolution ?

• Markov process
• Processes homogeneous in time 

– wide-sense, or 
– narrow-sense

• Gaussian processes
• Martingale …
• …
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( ) ( ){ | past}X t t X t+ ∆ =E



( ) ( ) ( )( )i is t t s t+ ∆ ≥

fluctuation theorem ⇒

in place of

⇒ irreversible entropy is a submartingale
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Doob decomposition ⇒

⇒

martingale increasing process

( )i
t ts M G= +

{ ( ) | past}: ( )E M t dt M t+ =

four distinct interpretations 
in continuum thermomechanics

(weakly monotonic f’n)
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time and/or 
spatial scale
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levels of thermodynamic models
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Drucker's Stability Postulate • a classification only
• many counterexamples (conceptual models and 

experiments)

levels of thermodynamic models
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Drucker's Stability Postulate • a classification only
• many counterexamples (conceptual models and 

experiments)
Ziegler's Orthogonality Principle • classifying principle for a wide range of solids, 

soils, and fluids (starts from energy and entropy 
production)

• some materials (models and experiments) fall 
outside of it

Edelen's Primitive Thermomechanics • accounts for dissipationless forces or fluxes
• offers general solution consistent with 2nd law

Second Law of Thermodynamics • almost universally accepted as true
• ... some materials (models and experiments) on 

very small time and space scales fall outside of it
fluctuation theorems • account for negative entropy production

levels of thermodynamic models
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How can axioms of thermomechanics admit negative entropy production?
Fundamental role in physics is played by free energy and dissipation function. 
That role is not played - as classically done in rational continuum mechanics – by 
the quartet of stress σ, heat flux q, free energy ψ, and entropy s.
… a very wide range of continuum constitutive behaviors may be derived from 
thermomechanics with internal variables (TIV)
Axiom of Determinism is to be replaced by Axiom of Causality: "The future state of 
the system depends solely on the probabilities of events in the past" 
Fluctuation Theorem (FT) is derived from the Axiom of Causality. 
Second Law is obtained as a special case of FT. 
Eventually, this justifies the Axiom of Determinism.    
Axiom of Local Action is to be replaced by the scale dependence of adopted 
continuum approximation. Reference to microstructure is needed.
Axiom of Equipresence is to be abandoned since the violation of Second Law may 
occur in one physical process present in constitutive relations, not all.
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advantages of Fluctuation Theorems

Quantify probabilities of violations of Second Law
Are verifiable in laboratory
Can be used to derive the linear transport coefficients of, 
say, Navier-Stokes fluids (via Green-Kubo relations)
Valid in nonlinear regime, far from equilibrium
Also apply to thermal and electrical phenomena
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… Stochastic thermomechanics

⇒

free energy dissipation function

Stochastic thermomechanics
with internal variables (TIV)

stochastic

( ) , 0d k
ij ij k

Td q
T

σ ρφ− = ≥( ) ( ), ,ij ijT u s sTψ ε ε= −

int th ( , ) 0    where    ( , ) ( , ) ( , )ρ φ ω φ ω φ ω φ ω= ≥ = +Y V V V d q⋅
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φ (V)

V

φ (V)

V

Y=∇V φ+U

U
∇V φ

(a) (b)

Y=λ∇V φ

Thermodynamic Orthogonality
via convex analysis

Primitive Thermodynamics 
with powerless vector
via Poincaré’s lemma

… or via maximum information entropy in statistical physics:
Dewar (2005) O-S & Zubelewicz (2011) [J. Phys. A: Math. Theor.]
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(H. Ziegler, 1957) (D. Edelen, 1973)



φ (V)

V

φ (V)

V

Y=∇V φ+U

U
∇V φ

(a) (b)

Y=λ∇V φ

Thermodynamic Orthogonality
stochastic

28

Primitive Thermodynamics 
w/ powerless vector stochastic



29

Bernoulli equation

Acceleration waves in 1D media

dissipation elastic nonlinearity
competition

critical amplitude

time to blow-up

⇒

⇒

c
µα
β

=

0

1 ln(1 )t µ
µ βα∞ = − −

[ ] 2 1a a aα ≡ = −  

in deterministic medium: 2d
dt
α µα βα= − +
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Bernoulli equation

Acceleration waves with 
nanoscale wavefront thickness

dissipation elastic nonlinearity
stochastic competition!

critical amplitude random

2d
dt
α µα βα= − +

time to blow-up random

⇒

⇒

c
µα
β

≠

0

1 ln(1 )t µ
µ βα∞ ≠ − −

[ ] 2 1a a aα ≡ = −  

in random medium:
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Bernoulli equation

Acceleration waves with 
nanoscale wavefront thickness

2d
dt
α µα βα= − +

⇒

[ ] 2 1a a aα ≡ = −  

in random medium:

stochastic dynamical system 
driven by random viscosity



1/2
0 20

3/2 2
0 02 2
R Rd G E

dx G G
α ρ ρα α

′

= −

     
instantaneous modulus instantaneous second-order tangent modulus

zero-mean Gaussian white noise



• Since the dissipation may 
become negative, the wave 
that started at the initial 
amplitude  can 
actually blow-up instead of 
exponentially die off. 

• The blow-up event becomes 
impossible as the wavefront
thickness gets larger.

• Taking other spatial correlations 
of the random field viscosity than 
white-noise does not 
fundamentally change the results.

deterministic/homogeneous medium

random medium 32

: 1 /z α=



(a) (d)

(c)
(b) (c)

ϕ

v

stress tensor is 
not symmetric in 
a molecular fluid

dV element of micropolar continuum 
(with velocity v and microrotation ϕ 
DOFs) having random field fluctuations

(fractal) porous network within which 
the micropolar fluid flow takes place

porous rock
Multiscale Permeability
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Flow in random porous media

Stokes’ flow:

Darcy’s Law (1876):

…

After homogenization: 

pU ∇=∇


2µ

0=⋅∇ U


pKU D ∇⋅−=
µ

~~


0=⋅∇ DU


0)
~~( =∇⋅⋅∇ pK

02 =∇ p
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Hill condition: Equivalence of energetic and mechanical definitions of     
Darcy’s law:
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[Proc. R. Soc. A, 2006;  Adv. Appl. Mech, 2016]
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Effect of increasing window scale on the 
convergence of the permeability/resistance 
tensor hierarchy (upper/lower bounds under 
Dirichlet/Neumann b.c.). Finite-size scaling of the product of K and R.
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In view of violations of the 2nd law
the smaller are the channels, the better is the permeability!
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… flows in biomechanics



(a) (d)

(c)
(b) (c)

ϕ

v

stress tensor is 
not symmetric in 
a molecular fluid!

dV element of micropolar continuum 
(with velocity v and microrotation ϕ 
DOFs) having random field fluctuations

(fractal) porous network within which 
the micropolar fluid flow takes place

porous rock
Multiscale Permeability
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Stress tensor is not symmetric
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,i i
D v
Dt

ρ ρ= −

,i
ji j i

Dv f
Dt

ρ τ ρ= +

,i
ji j i ijk jk

Dl g e
Dt

ρ µ ρ τ= + +

( ), , ,i i ji i j kji k ji i j i ijk jk
Du q v e w w g e
Dt

ρ τ µ ρ τ= − + − + + +

classical continuum mechanics is recovered for:

use micropolar fluid mechanics
[Eringen, Łukaszewicz]

⇒



Balance equations of micropolar fluids
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( ) ( ) ( )
( ) ( )0

, , , , , 2

, , , , ,

ij k k ij j i i j r j i i j r mij m

ij k k ij d j i i j a j i i j

p v v v v v e w

c w c w w c w w

τ λ δ µ µ µ

µ δ

= − + + + + − −

= + + + −

( ) ( ), , , 2 ,i
i r j ji r i kk r ijk k j

Dv p v v e w
Dt

ρ λ µ µ µ µ µ= − + + − + + +

( ) ( ) ( )02 , 2 , ,i
r mij j i i d a j ji d a i kk

Dl e v w c c c w c c w
Dt

ρ µ= − + + − + +

int, ,i i i i
Du q pv
Dt

ρ ρφ= − − +

linear viscous fluid model (generalizes Navier-Stokes)

     

intrinsic 
dissipation function 

     

Hold on average:



Violations of second law in diffusion problems
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in heat conduction 
on finite domain:

Lyapunov function:

if SL holds:

0

0   on   
   on   

i i q
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= ∂
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Observations
• Non-zero probability of negative entropy production rate on 

very small time and space scales motivates a revision of 
continuum mechanics. 

• Fluctuation theorem replaces 2nd law as a restriction on 
dependent fields and material properties.

• Entropy evolves as a submartingale.
• Stochastic generalizations of thermomechanics. 
• Various effects due to violations when the phenomena occur 

on spatial and/or time scales where the 2nd law may 
spontaneously be violated
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Thermodynamic orthogonality: 
… from a molecular fluid to a continuum

for Fourier-type heat conduction

int ( , ) ( ) ( , )G Mϕ ω ω= +d d d 

( ) ( )
(2)2 ,     ,     2q d

ij ij ij ijG d p dµ σ δ σ µ′ ′= = − =
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for Maxwell-Cattaneo heat conduction

Primitive thermodynamics: 
… from a molecular fluid to a continuum

     
( )0,     ,=V U U 0 w 0⋅ =

( ) [ ]1 2 3[ , , ],     [ , , ],     , ,d T
T

ψ= − − = =qY V d q q U u u u

∇
σ ∇
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Violations of second law in diffusion problems

45

e.g. in heat conduction [Searles DJ, Evans DJ (2001) Fluctuation theorem 
for heat flow. Int. J. Thermophys. 22(1), 123-134]

RFs of internal energy and entropy:

                    
( )( ) ( , ) .i ij j i ij jG q q M q qλ ω ω= =q q  M

2:ij × Ω →M D V

Second Law on average:

Dissipation function:



RFs with exponential or Gaussian correlation functions

( ) exp[ ], 0, 0 2C x Ax Aα α= − > < ≤

Martingale fluctuations in 2d: random fields
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RFs with fractal + Hurst effects 
Cauchy Dagum

( ) /
( ; , ) : 1 1 ,C r r

γ βββ γ
−−= − +D( ) /

( ; , ) : 1 ,C r r
β ααα β

−
= +C

0β > 0 2α< ≤ 7γ β< 2 (5 7) 0β β γ γ+ − + <

Martingale fluctuations in 2d: random fields
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