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AbstractP Derivation of the basic formulae for determination of the flexural buckling resistance of 

frames with members with non-uniform cross-sections and non-uniform axial compression forces. 

Generalization of procedure given in EN 1993-1-1 in cl. 5.3.2(11) which is limited to the  frames with 

uniform cross-sections and compression forces. Detailed description of the procedure using iterative 

calculation. Numerical examples for uniform member. Comparison results with V-method ones. 

1 FLEXURAL BUCKLING RESISTANCE OF FRAMES WITH NON-UNIFORM 
MEMBERS AND NON-UNIFORM NORMAL FORCE DISTRIBUTION 
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The characteristics relating to critical cross-section, which is the cross-section relevant for 
assessment of flexural buckling resistance of the frame, are below denoted by index „ m “. The 
most onerous condition (1) occurring in critical cross-section „ m “, may be then rewritten in 
the form 

1
,

,,

,

, ≤+
mRd

II

mugliEd

mRd

mEd

M

M

N

N
              (2)

The “ugli” imperfection is defined as follows 

                                                                          ( ) ( )xx crmugliugli ηηη ,,0=                                                                        (3) 

where 
)(xcrη  is the first elastic critical buckling mode, with the amplitude 1=max)(xcrη . 

mugli,,0η  is the amplitude of „ugli“ imperfection depending on characteristics of critical            

cross-section „ m “. Index „ 0 “ will in this paper indicate that a value is amplitude of a 
function. The amplitude of „ugli“ imperfection may be determined from the condition 
requiring the following: the critical member of the frame, when under compression axial 
force, should have the same flexural buckling resistance as its “generalised equivalent 
member” („gem“). The „gem“ is the member simply supported on its ends, having the same             
cross-section properties ( mm AEI , ) and axial force ( mEdN , ) as the critical member of the frame 

in its critical cross-section „ m “, and having such buckling length crL , that its elastic critical 
axial force is the same as the elastic critical axial force mcrN ,  of the critical member of the 

frame in its critical cross-section „ m “. The „ugli“ imperfection amplitude depending on the             
characteristics of the critical cross-section „ m “ is then defined by 
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                                                                ( )
mRk

mRk
mmmk

N

M
e

,

,
,, .200 −= λα ,  for 20.>mλ                                             (6) 

where 

mcrM ,η  is the absolute value of the fictitious bending moment at the critical cross-section 

„ m “, due to )(xcrη , 

mEdN ,  is the design value of compression axial force at the critical cross-section „ m “, 

positive if compression, 

mRkM ,  is the characteristic value of bending moment resistance of the critical cross-section 

„ m “, 

mRkN ,  is the characteristic value of axial force resistance of the critical-cross section „ m “, 
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mde ,,0 , mke ,,0  are the design (index „ d “) and characteristic (index „ k “) values of amplitude of 

“local initial” („li“) imperfection of the “gem” depending on the characteristics of the critical 
cross-section „ m “. It can be easily shown, that „li“ imperfection is used when analysis of 
individual member is done, 

mα  is the imperfection factor for the critical cross-section „ m “ and the relevant buckling 
curve, see Table 6.1 and Table 6.2 in [1], 

1Mγ  is the partial factor, which should be applied to the various characteristic values of 
resistance of members to instability, 

                                                                                   
mcr

mRk
m

N

N

,

,
=λ                                                                                 (7)

              

mλ  is the relative slenderness of the structure, relating to the critical cross-section „ m “, 

mχ  is the reduction factor depending on the relevant imperfection factor mα  and the relative 

slenderness mλ , see 6.3.1 in [1],  
)(xNcr  is the distribution of elastic critical force, 

crα is the minimum force amplifier for the values of the axial force configuration )(xNEd  in 
members to reach the values of elastic critical force configuration )(xNcr . For the given frame, 

crα is a constant. The ratio =crα ( )xNxN Edcr /)(  gives for all cross-sections „ x “ the same 
numerical value. 

The location of the critical cross-section „ m “ is generally not known, because it depends 
on the location of maximum of the sum of two functions in the left side of the condition (1). 
The value of the second term of the sum in (1) depends on the characteristics of the critical 
cross-section „ m “. The location of the maximum of the first function in (1): ( ) ( )xNxN RdEd /   

usually does not coincide with the location of maximum of the second function in (2): 

)(/)(, xMxM Rd
II

ugliEd
, which is given by the location of the maximum of the function  

( )
max)(/x xIcrη ′′ . Generally it is therefore necessary to use iterative calculation. In the special 

case, when ( ) ( )xNxN RdEd /  is constant, the location of critical cross-section „ m “ is determined 

by the location of 
max, )(/)( xMxM Rd

II
ugliEd

 or ( )
max)(/x xIcrη ′′  and when also ( )xEI  is constant, 

by the location of ( )
maxxcrη ′′ . 

Distribution of bending moment )(, xM
II

ugliEd
, which is the effect of axial forces acting in 

members of frame having the „ugli“ imperfection ( ) ( )xx crmugliugli ηηη ,,0= , may be calculated in 

the following way: 
1) The first eigen-value crα  and the first buckling mode ( )xcrη  and its derivates ( )xcrη ′  and 

( )xcrη ′′  are obtained by numerical methods using a computer program. 
2) The „ugli“ imperfection amplitude mugli,,0η depending on the characteristics of the critical 

cross-section „ m “ is calculated for the estimated location of the critical cross-section „ m “ 
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,,0

η

αη =                                                 (8)

3) The distribution of the “ugli” imperfection is then 
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                                                                                  ( ) ( )xx crmugliugli ηηη ,,0=                                                                (9)

4) The amplitude m,0η of the additive deflection ( )xη , which is the result of axial forces acting 

in the members of frame with „ugli“ imperfection, may be calculated as 

                                                                                        
1

0
0

−
=

cr

mugli
m α

η
η

,,
,                                                                  (10)

5) The distribution of the additive deflection ( )xη is then 
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==
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,                                               (11) 

6) The distribution of the bending moment )(, xM
II

ugliEd
 due to „ugli“ imperfection having 

shape of )(xcrη  may be calculated from the formula 
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where 
k is the well known ratio of the bending moment calculated according to the 2nd order      
theory to the bending moment calculated according to the 1st order theory, which is in the case 
of using elastic critical buckling mode )(xcrη constant value for the whole frame 
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It may be also written 
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where 

                                                                                       ( )  x)(, crcrC Cx ηη 0=                                                         (15) 
  

is the first elastic critical buckling mode with amplitude 0C , which may have any numerical 
value, and 

                                                                                 mdmEd
II

mugliEd
ekNM ,,,,,, 00 =                                                      (16) 

From (14) it may be seen that, the first elastic critical buckling mode )(, xcrCη  with any value 

of the amplitude 0C  may be used, and not only ( )xcrη  having 10 =C , when computing ratio of 
bending moments 
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                                                                                          mcrcr MxM ,/)( ηη .                                                                (17)

7) After the distribution of the function on the left side of the condition (1) is known, the 
condition (2) may be evaluated and checked, if the location of maximum of this function will 
coincide with estimated location of the critical cross-section „ m “ from the first iteration. If the 
answer is no, the procedure shall be repeated in an iterative way. 
8) If the answer is yes, the condition (2) may be evaluated and the frame verified. 

The proposed procedure  was first time published in [2] and was verified by calculating of 
several numerical examples [3-8]. Prof. Chladný derived de ,0 and was the first who 

generalized the method given in 5.3.2(11) of EN 1993-1-1 [1] also for non-uniform cross-
sections and non-uniform compression forces. He applied it in design of bridges in practice, 
e.g. in design of basket handle arch type Apollo bridge in Bratislava and in investigations of 
continuous truss bridges [9-11]. The derivation of basic formulae used in this paper differs 
from the ones published by Prof. Chladný. His method was accepted in 5.3.2(11) of EN 1999-
1-1 [12]. 

2 NUMERICAL EXAMPLE 

Given input values: uniform member with cross-section HE 260 B (ARBED), steel grade S 
355, partial safety factor 111 .=Mγ . The member length mL 6.4= . The action: the axial normal 

force EdN  which equals to the member resistance. For RdbEd NN ,=  the utility factor 0.1=U . 

The flexural buckling about minor axis z-z  is investigated (buckling curve „ c “, 49.0=α ). 
Material properties 

                    GPaEMPaffMPaf MydyMy 210,727.322/,1.1,355 1,1 ===== γγ             (18) 

Properties of cross-section 

                           2.0,49.0,"",26.0,26.0 0 ==== λαmccurvebucklingmbmh                    (19) 

                                   
33

,
463 10395,1035.51,1084.11 mmxWmmxImxA zelz ===                         (20) 

Index “m” denotes that properties relate to the critical section. In this example the member has 
uniform cross-section, therefore  

                                                             zelmzelzmzm WWIIAA ,,,, ,, ===                                                     (21) 

The resistances of the critical cross-section “m” 

            kNmfWMkN
N

NkNAfN yzelRkz

M

mRk

mRdyRk 225.140,3821,4203 ,,
1

,
, ======

γ
     (22) 

                                                              RkzmRkzRkmRk MMNN ,,,, , ==                                                                 (23) 

The critical force in the critical cross-section “m” 

                                 kN
L

EI
NmLL

crz

mz

mcrcrz 10290,216.3,699.0
2

,

,
2

,, =====
π

ββ                         (24)
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The buckling resistance in the critical cross-section “m” 

                             ( )[ ] 812.015.0,639.0
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χ ,     kNNN mRdmmRdb 5.2911,,, == χ                            (26) 

In the example it is supposed that the value of action equals to the buckling resistance 
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, =α ,     0.1, =dultα ,     kNNN mRdbdultEd 5.2911,,, == α                          (27) 

    

The characteristic and design values of the part of the amplitude of the unique global and local 
initial (ugli) imperfection with the shape of elastic critical buckling mode depending on the 
properties of the critical cross-section “m”. The formula (28) is based on the requirement that 
the imperfection ( )ξηugli  (38) having the shape of the elastic buckling mode ( )ξηcr  (30) or 

(33) should have the same maximum curvature as the equivalent uniform member. 
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The shape of the first elastic critical buckling mode 

                                                           ( ) ( ) ( ) ( )εξεξεξεξη sincos1 +−−=                                                         (30) 

                                        ( )[ ]maxξη   is in the section 602.0
6.4

768.2max
max ===

L

x
ξ                                    (31) 

                                      ( )[ ] ( ) ( ) ( )[ ] 283.6sincos1 maxmax =+−−== εξεξεξεξη C                                   (32) 

The normalized first elastic critical buckling mode. Note that the normalizing is not necessary 
to perform. The results will be the same. 
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The second derivation of the normalized first elastic critical buckling mode 
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                  ( )[ ]maxξηcr
′′  is in the critical section “m” 650.0

6.4
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−
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L

LL

L

x crm
mξ         (35)                              

                                                              ( )[ ] ( ) 1
max 6991.0 −−=′′=′′ mmcrcr ξηξη                                                         (36) 

The amplitude of the unique global and local initial (ugli) imperfection 
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The unique global and local initial (ugli) imperfection. In the Eurocodes the symbol ( )ξηinit  is 

used for it.  
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Figure 1: Uniform global and local initial (“ugli”) imperfection valid for buckling about z-z 

The additive deflection due to EdN  acting on the member with the unique global and local 

initial (ugli) imperfection. 

                                                                       ( )ξη
α

η
ξη cr

cr

mugli

II 1
)( ,,0

−
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Figure 2: Additive deflection ( )xIIη  due to EdN  for flexural buckling about minor axis z-z 
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The bending moment distribution in the member due to ( )ξηII with allowing for second order 

effects 

                                                                  ( ) ( )ξηξη IImz

II EIM
ugli

′′−= ,                                                                       (40) 

  

The bending moment due to ( )ξηII  in the critical section “m”. 

                                                   ( ) kNmEIM mIImzm

II

ugli
346.30)(, =′′−= ξηξη                                                      (41) 

This value may be calculated without any analysis from this formula 

                                           ( ) ( ) kNmNkekMM Edmdm

I

m

II

ugli
346.30,,0 === ξξη                                              (42) 

The bending moment due to ( )ξηII  in the fixed end of the member. 

                                                      ( ) kNmEIM IImz

II

ugli
621.29)0(0 , −=′′−= ηη                                                       (43) 

Figure 3: Direct stresses distributions for flexural buckling about minor axis z-z 

The utility measure in the fixed end of the member. 
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The utility measure in the critical section “m”. 
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                                         ( )
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The utility measure  ( )ξIIU  in the critical section “m” must be the same as the utility measure 

in equivalent member method when RdbEd NN ,= . 
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The comparison with �-method [13] 
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Figure 4: The comparison of the bending moments distributions for RdbEd NN ,=

The utility measure 
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The utility measures will differ when RdbEd NN ,< . For example for RdbEd NN ,5.0= we obtain 
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Rdb

EdI
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Ed
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Figure 5: The comparison of the bending moments distributions for RdbEd NN ,5.0=

Generally it is necessary to use iterative calculation. The iterative procedure was not necessary 
to do in given numerical example. In the special case, when ( ) ( )xNxN RdEd /  is constant, and 

the cross-section is uniform (our case), the location of critical cross-section “m”  is determined 
by the location of ( )

max
xcrη ′′ .  

The graphical interpretation of the de ,0  in the case of uniform member with uniform normal 

force distribution, which found by the first author, is very important for designers in practice. 
After drawing the shape of the elastic buckling mode it is possible for simple frames (Fig. 6, 
7, 8) to find the exact or approximate location of the critical section “m”  (see explanation in 
Fig. 1). The locations of critical cross-section “m” for 14 special cases are shown in Fig. 6, 7 
and 8. 
For such cases the value of the bending moment due to ( )ξηII  in the critical section “m” may 
be calculated without any analysis only from the formula (42).  

3 CONCLUSION 

As an alternative to global initial sway imperfections  and initial local bow imperfections 
the shape of the elastic critical buckling mode ( )ξηcr of the structure or of  the verified 

member may be applied as a unique global and local imperfection (ugli) imperfection. 
It was shown how to apply the Chladný`s method [9, 10, 11] which was derived by another 

way in [2] for the uniform member with uniform normal force distribution. The first author 
found that the de ,0 has the graphical interpretation. This fact enables for simple frames to find 

the exact or approximate location of the critical section “m” and to calculate the bending 
moment due to ( )ξηII in the critical section “m” without any analysis only from the formula  

                                                          ( ) ( ) Edmdm

I

m

II NkekMM
ugli ,,0== ξξη                                                              (53)
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Figure 6: The shapes of elastic buckling mode applied as “ugli” imperfections. Bending moments due 
to “ugli” imperfection and location of “m”. 
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Figure 7: The shapes of elastic buckling mode applied as “ugli” imperfections. Bending moments due 
to “ugli” imperfection and location of “m”. 
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Figure 8: The shapes of elastic buckling mode applied as “ugli” imperfections. Bending moments due 
to “ugli” imperfection and location of “m”. 
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