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Abstract. Derivation of the basic formulae for determination of the flexural buckling resistance of
frames with members with non-uniform cross-sections and non-uniform axial compression forces.
Generalization of procedure given in EN 1993-1-1 in cl. 5.3.2(11) which is limited to the frames with
uniform cross-sections and compression forces. Detailed description of the procedure using iterative
calculation. Numerical examples for uniform member. Comparison results with w-method ones.

1 FLEXURAL BUCKLING RESISTANCE OF FRAMES WITH NON-UNIFORM
MEMBERS AND NON-UNIFORM NORMAL FORCE DISTRIBUTION

Flexural buckling resistance of the frame, which consists of members with variable cross-
sections, with any boundary conditions, supports and/or variable foundation and under
variable axial forces may be verified by the following condition

NoG) |, Mbp®) "
Ny (x) My (x) max_

where
N, (x) is the axial force distribution, positive if compression. The design values of the axial

forces may be calculated by the 1st order theory,

M .(x)1s the bending moment distribution, which is the result of axial forces acting in

/i

Ed ugli
members of frame having “unique global and local initial” (,,ugli*) imperfection. The design
values of this bending moment shall be calculated by the 2nd order theory. The ,,ugli
imperfection is an equivalent geometrical imperfection, which purpose is to cover in
numerical model all imperfections (geometrical and structural) of real structure.

Ny, (x) 1s the distribution of the axial force resistance depending on the cross-section class,
Mpy(x) is the distribution of the bending moment resistance depending on the cross-section
class.



Ivan BALAZ et al.

The characteristics relating to critical cross-section, which is the cross-section relevant for
assessment of flexural buckling resistance of the frame, are below denoted by index ,,m «. The
most onerous condition (1) occurring in critical cross-section ,,m“, may be then rewritten in
the form

N MU .
Ed.,m + Ed ugli,m S 1 (2)
NRd,m MRd,m

The “ugli” imperfection is defined as follows

nugli (x) = nO,ugli,mncr (x) (3)

where
ner(x) is the first elastic critical buckling mode, with the amplitude |n.,(x)|  =1.

max
Nougli,m 18 the amplitude of ,ugli“ imperfection depending on characteristics of critical

13

cross-section ,,m . Index ,,0“ will in this paper indicate that a value is amplitude of a
function. The amplitude of ,ugli“ imperfection may be determined from the condition
requiring the following: the critical member of the frame, when under compression axial
force, should have the same flexural buckling resistance as its “generalised equivalent
member” (,,gem®). The ,,gem* is the member simply supported on its ends, having the same
cross-section properties ( E1,,, 4,, ) and axial force (Ngy ,, ) as the critical member of the frame

in its critical cross-section ,,m “, and having such buckling length L., that its elastic critical
axial force is the same as the elastic critical axial force N, of the critical member of the

frame in its critical cross-section ,,m *“. The ,,ugli imperfection amplitude depending on the
characteristics of the critical cross-section ,,m *“ is then defined by

_ Ncr,meO,d,m _ NEd,meO,d,m 4
770,ugli,m - E,I—,,‘ - acr W ( )
m ncr,m ner,m
=2
v
€0,d,m = €0,k,m —M_12 (5)
1_//{m /lm
M _
€0 km = O (Zm —0.2)%}’:””, for Am >0.2 (6)
M

where
‘M,]cr,m‘ is the absolute value of the fictitious bending moment at the critical cross-section

»m ', due to n,.(x),

Nggm 1is the design value of compression axial force at the critical cross-section ,,m “,

positive if compression,
M gk 18 the characteristic value of bending moment resistance of the critical cross-section

13
2 m 9
3

Ngk.m 18 the characteristic value of axial force resistance of the critical-cross section ,,m *,



Ivan BALAZ e al.

€0.d.m» €0.k,m are the design (index ,,d ) and characteristic (index ,, k ) values of amplitude of

“local initial” (,,li*) imperfection of the “gem” depending on the characteristics of the critical
cross-section ,,m “. It can be easily shown, that ,li* imperfection is used when analysis of
individual member is done,

a,, 1s the imperfection factor for the critical cross-section ,,m

curve, see Table 6.1 and Table 6.2 in [1],
7u1 1s the partial factor, which should be applied to the various characteristic values of

3

and the relevant buckling

resistance of members to instability,

- N
A = |~ (7)

Ncr,m

3

Am is the relative slenderness of the structure, relating to the critical cross-section ,,m *,
¥m 18 the reduction factor depending on the relevant imperfection factor ¢, and the relative
slenderness A, see 6.3.1 in[1],

N,(x) is the distribution of elastic critical force,

o, 1s the minimum force amplifier for the values of the axial force configuration Ng;(x) in
members to reach the values of elastic critical force configuration N,.(x) . For the given frame,
o,-1s a constant. The ratio . = N,.(x)/Ngg(x) gives for all cross-sections ,,x* the same

numerical value.

The location of the critical cross-section ,,m “ is generally not known, because it depends
on the location of maximum of the sum of two functions in the left side of the condition (1).
The value of the second term of the sum in (1) depends on the characteristics of the critical
cross-section ,,m “. The location of the maximum of the first function in (1): N, (x)/ N, (x)

usually does not coincide with the location of maximum of the second function in (2):

Mg d,ugli(x)/M rd(x), which is given by the location of the maximum of the function

e (x)/ I(x)|max. Generally it is therefore necessary to use iterative calculation. In the special

case, when Ngy;(x)/ Npy(x) is constant, the location of critical cross-section ,,m  is determined

or
max

n¢-(x)/1(x)| . and when also EI(x) is constant,

by the location of ‘M g d’ugh.(x)/ MRy (x)

by the location of

76 0) L -

11

Ed.ugi™®) » Which is the effect of axial forces acting in

Distribution of bending moment M

members of frame having the ,,ugli* imperfection 7,4, (x) =10 ugsi m7cr (), may be calculated in
the following way:

1) The first eigen-value ¢, and the first buckling mode 7,,.(x) and its derivates 7.,.(x) and
ne.(x) are obtained by numerical methods using a computer program.

2) The ,,ugli* imperfection amplitude 79,4 ,» depending on the characteristics of the critical

3

cross-section ,, m “ 1s calculated for the estimated location of the critical cross-section ,,m

Ny m€o.dm

77O,ugli,m = acr ‘M (8)

ner,m

3) The distribution of the “ugli” imperfection is then
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nugli (x) = nO,ugl[,mncr (X) (9)

4) The amplitude 7, of the additive deflection 7(x), which is the result of axial forces acting

in the members of frame with ,,ugli* imperfection, may be calculated as

170,ugli,
Ton == 522 (10)
o —1

5) The distribution of the additive deflection 7(x)is then

o,ugli,
77(x)= 170,mMcr (x) = LT Ner (x) (11)
O —1

6) The distribution of the bending moment M g d.ugli ™) due to ,,ugli* imperfection having

shape of 7,,.(x) may be calculated from the formula

no.ugliym —EI ”
—E 7 (x) = kN Ed me0.d.m ~HCer () (12)

cr | ﬂcr,m|

M Ilfld,ugli (x)==EI(x)n"(x) =—EI(x)

where

k is the well known ratio of the bending moment calculated according to the 2" order
theory to the bending moment calculated according to the 1* order theory, which is in the case
of using elastic critical buckling mode 7,, (x) constant value for the whole frame

L (13)

It may be also written

I — EL(X)n0(x) —E1(X)NC ¢ (x)
MEd,ugli(x) =kNgameo,dm——— 1,1 =kNEdmeodm———7, 1 =
Ely, Ner,m EL, NC,crym (14)
= kN Mper™) _ i1 Mcper(X)
= KINEd .m€0,d ,m = Y0,Ed ugli,m Mi
‘ ncr,m‘ ‘ Cncr,m‘
where
n¢,cr(x) =Coller (X) (15)

is the first elastic critical buckling mode with amplitude C;, which may have any numerical
value, and

yii
M\ g4 uglim = KN Ed,me0,d.m (16)

From (14) it may be seen that, the first elastic critical buckling mode 7¢ . (x) with any value

of the amplitude C, may be used, and not only 7,,(x) having Cy =1, when computing ratio of
bending moments
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Mie, (x) /‘Mﬂcr,m‘ . (17)

7) After the distribution of the function on the left side of the condition (1) is known, the
condition (2) may be evaluated and checked, if the location of maximum of this function will
coincide with estimated location of the critical cross-section ,,m « from the first iteration. If the
answer is no, the procedure shall be repeated in an iterative way.

8) If the answer is yes, the condition (2) may be evaluated and the frame verified.

The proposed procedure was first time published in [2] and was verified by calculating of
several numerical examples [3-8]. Prof. Chladny derived e,, and was the first who
generalized the method given in 5.3.2(11) of EN 1993-1-1 [1] also for non-uniform cross-
sections and non-uniform compression forces. He applied it in design of bridges in practice,
e.g. in design of basket handle arch type Apollo bridge in Bratislava and in investigations of
continuous truss bridges [9-11]. The derivation of basic formulae used in this paper differs
from the ones published by Prof. Chladny. His method was accepted in 5.3.2(11) of EN 1999-
1-1[12].

2 NUMERICAL EXAMPLE

Given input values: uniform member with cross-section HE 260 B (ARBED), steel grade S
355, partial safety factor y);; =1.1. The member length L =4.6m . The action: the axial normal

force Ny, which equals to the member resistance. For N, = N, ,, the utility factor U =1.0.

The flexural buckling about minor axis z-z is investigated (buckling curve ,,c*, o =0.49).
Material properties

f,=355MPa, y,, =11, f,,=f, 1V =322727TMPa, E=210GPa (18)
Properties of cross-section

h=0.26m, b=026m, buckling curve "c", o, =0.49, Ao =02 (19)

A=11.84x10"m, I_=51.35x10°mm", W

el,z

=395x10° mm’ (20)

Index “m” denotes that properties relate to the critical section. In this example the member has
uniform cross-section, therefore

=W

Am:A’ ]z,m:Iz’ W el,z (21)

el,z,m

The resistances of the critical cross-section “m”

N
Ny = Af, =4203kN, N, =—=%=3821kN, M_, =W, _f, =140225kNm (22)

M1
NRk,m =N Mz,Rk,m = Mz,Rk (23)

The critical force in the critical cross-section “m”

T*El

=069, L =pL=3216m, N, =——"="=10290kN 24)

cr.m 2

z,cr
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The buckling resistance in the critical cross-section “m”

_ N .
A = /NR—’”" =0.639, @, = 0.5[1+am(/1m —A)+ /Ifn]: 0.812 (25)

_ 1
“ O, P -

=0.762, N, pyn =N =2911.5kN (26)

2
Am
In the example it is supposed that the value of action equals to the buckling resistance

Xyg = Ny . =10, Ny =0a, N, =2911.5kN (27)

u
Nb,Rd,m

The characteristic and design values of the part of the amplitude of the unique global and local
initial (ugli) imperfection with the shape of elastic critical buckling mode depending on the
properties of the critical cross-section “m”. The formula (28) is based on the requirement that
the imperfection 7,,, (£) (38) having the shape of the elastic buckling mode n. (g‘) (30) or

(33) should have the same maximum curvature as the equivalent uniform member.

Zo o
—  _\M 1-

Com = O A = Ao =2 =T 179mm . ey, =€op —L=TAT3mm  (28)

N em 1=y, An
L _ 6155, «, = Nev =3.534, k= Do _ 1.395, ¢ =Z_ 4494, & =x (29)

eo,d,m NEd acr _1 IB L
The shape of the first elastic critical buckling mode
1(&)=e(1-&)-ecos(ef) +sin(ef) (30)
F](f)]mx is in the section &, = Yoy _ 2768 _ 0.602 (31)
L 4.6

(&), = € =[e(1- &)~ £ cos(zg) + sin(e¢)],,, =6.283 (32)

The normalized first elastic critical buckling mode. Note that the normalizing is not necessary
to perform. The results will be the same.

(&)= 8(1_5)_gcoé(g§)+sm(g§), [17..(&)],.. =1.0 (33)

ncr

The second derivation of the normalized first elastic critical buckling mode

(&) = [%)2 £cos(ef)—sin(ef) (34)

C
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[77.(£)]_ is in the critical section “m” &, = XT’” _L- %SL“’" = 24922 =0.650  (35)

[, (E)],... =10.(&,)=—0.6991m™" (36)

The amplitude of the unique global and local initial (ugli) imperfection

acreOd mNEd eOd mNcrm
77 ugli,m = — ” = — ” y :10.2017’1’17’}’1 (37)
vt B ni &) ELml(EL)

The unique global and local initial (ugli) imperfection. In the Eurocodes the symbol 7, . (&) is

used for it.
a.e , N e,, N
7714’ i (g) = 77 ugli mncr (g) = = O*d*m” B ncr (g) = b ’f”m ncr (6) (38)
“ el E[z,m - ncr (fm )| E[z,m - 77cr (gm X

N cr.direction.(x)

Figure 1: Uniform global and local initial (“ugli”) imperfection valid for buckling about z-z

The additive deflection due to N, acting on the member with the unique global and local

initial (ugli) imperfection.

10.ugii
1,(§) =427 (&) (39)
o, —1
"
Xmax
‘= ~
4 “("mmc)
35t i
ul
2.5
ﬂff(x) 2r
L5t
.
0.5
0 o1 02 03 04 05 06 07 08 09 1
=
L

Figure 2: Additive deflection 77, (x) due to N, for flexural buckling about minor axis z-z
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The bending moment distribution in the member due to 77,,(&) with allowing for second order

effects
M, (§)=~EL ,m;(¢)
The bending moment due to 77,,(£) in the critical section “n”.
M, (&§,)=—EL (&) =30.346kNm
This value may be calculated without any analysis from this formula
M, (&,)=kM"(&,)= ke, Ny, =30.346kNm
The bending moment due to 77, (£) in the fixed end of the member.

M) (0)==EL ,11;(0) =-29.621kNm

1001 7
55 L] 1 | i ‘.-‘l. ! Tt _q..‘ i
s -~
-~ -
- LY
0 - — 5
0 0.1 0.2’0’03 0.4 0.5 064 07 0.8 0.9 1
- 35t —=1 - -
-LTlNl n"-‘
- 801

UM(K)

renm® ™

T NeMX)- 170
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- 350~
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Figure 3: Direct stresses distributions for flexural buckling about minor axis z-z

The utility measure in the fixed end of the member.

M!" (0
U (0)= e +| 7., () | =0.762+0.232=0.994
NRd ‘ MRd ‘

The utility measure in the critical section “m”.

(40)

(41)

(42)

(43)

(44)
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M]]
U (g,)= e +| 1) o 7624023810 45)
"N

Rd Rd

The utility measure U” (&) in the critical section “m” must be the same as the utility measure
in equivalent member method when N, =N, ;.

NEd

U' = =1.0 (46)
Nb,Rd
The comparison with o-method [13]
1
w(x)= - (47)
. 71'(L - x)
y+ (- y)sin
Lcr ]
M 1
AM(x) =N —( . (48)
. Ny Zw(x)

AM (x,)=-30.347 kNm (49)

30 -

20 \\ }ﬁ
10 N
My Bdugli™)
AM (x) - 10 N /
kNm \ /
- - 20 ‘\\ i 7’
- 30 f
— 40 ‘
0 01 02 03 04 05 06 07 08 09 1

Figure 4: The comparison of the bending moments distributions for N, = N, p,

The utility measure

U =Ne +|AM (&) 0.762+0.238 =1.0 (50)
NRd ‘ MRd ‘

The utility measures will differ when N, <N, ,, . For example for N, =0.5N, ,, we obtain

EPNLRES
N Rd ‘ M Rd

=0.381+0.099 = 0.480 (1)

U"(¢,)=
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U' = N =05, U= N +|AM(§’")|= 0.3814+0.119=0.5 (52)
Nb,Rd Ny ‘ My, ‘
20 :
X
= o < L
N
10 A
M1 B eti ) S
kNm
— 0 : ~
AM(x) X :
kNm N g
Sl - s
~ 20 :
0 0.1 02 03 04 0.5 06 0.7 0.8 09 1

X
L
Figure 5: The comparison of the bending moments distributions for N, =0.5N, g,

Generally it is necessary to use iterative calculation. The iterative procedure was not necessary
to do in given numerical example. In the special case, when N,,(x)/N,,(x) is constant, and
the cross-section is uniform (our case), the location of critical cross-section “m” is determined

by the location of |7/ (x)_ .

The graphical interpretation of the ¢, , in the case of uniform member with uniform normal

force distribution, which found by the first author, is very important for designers in practice.
After drawing the shape of the elastic buckling mode it is possible for simple frames (Fig. 6,
7, 8) to find the exact or approximate location of the critical section “m” (see explanation in
Fig. 1). The locations of critical cross-section “m” for 14 special cases are shown in Fig. 6, 7
and 8.

For such cases the value of the bending moment due to 7,(£) in the critical section “m” may
be calculated without any analysis only from the formula (42).

3 CONCLUSION

As an alternative to global initial sway imperfections and initial local bow imperfections
the shape of the elastic critical buckling mode 7,,(¢) of the structure or of the verified
member may be applied as a unique global and local imperfection (ugli) imperfection.

It was shown how to apply the Chladny's method [9, 10, 11] which was derived by another
way in [2] for the uniform member with uniform normal force distribution. The first author
found that the ¢, , has the graphical interpretation. This fact enables for simple frames to find

13 2

the exact or approximate location of the critical section “m” and to calculate the bending
moment due to 77, (£) in the critical section “m” without any analysis only from the formula

M?Zgh (é:m): kM[(fm): key g N g (53)

10
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Figure 6: The shapes of elastic buckling mode applied as “ugli” imperfections. Bending moments due
to “ugli” imperfection and location of “m”.
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Figure 7: The shapes of elastic buckling mode applied as “ugli” imperfections. Bending moments due
to “ugli” imperfection and location of “m”.
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Figure 8: The shapes of elastic buckling mode applied as “ugli” imperfections. Bending moments due
to “ugli” imperfection and location of “m”.
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