LATERAL TORSIONAL BUCKLING OF BEAMS, RESISTANCES AND CRITICAL MOMENTS

Ivan J. Baláž*, and Yvonna P. Koleková**

* Department of Metal and Timber Structures, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovak republic e-mail: Ivan.Balaz@stuba.sk

** Department of Mechanics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovak republic e-mail: Yvona.Kolekova@stuba.sk

Beam in bending:

- Ideal beam without imperfections: characteristic is critical moment M_{cr}
- Real beam with imperfections characteristic is resistance of beam $M_{b,Rd}$

A. Ideal beam – without imperfections: Critical moment M_{cr}

Elastic critical moment M_{cr}

"fork" boundary conditions, uniform bending moment M, uniform nonwarping cross-section: warping stiffness $EI_w = 0 \text{ kNm}^4$

Lateral Torsional Buckling

Positive influence of warping stiffness on M_{cr}

• Rectangular cross-section

 $I_w \approx 0 \ m^6$

 $I_w = b^3 h^3 / 36$

• Double symmetric cross-section

$$M_{cr} = \frac{\pi \sqrt{EI_z GI_t}}{L} \qquad M_{cr} = \frac{\pi \sqrt{EI_z (GI_t + \pi^2 EI_w / L^2)}}{L}$$

Positive influence of vertical deflection on M_{cr}

$$M_{\rm cr} = \xi \frac{\pi \sqrt{EI_z(GI_t + \pi^2 EI_w/L^2)}}{L}, \quad \xi \ge 1$$

$$\xi = \frac{1}{\sqrt{\left(1 - \frac{I_z}{I_y}\right) \left[1 - \frac{I_z}{I_y} \frac{GI_t}{EI_z} \left(1 + \frac{\pi^2 EI_w}{L^2 GI_t}\right)\right]}}$$

Broude 1953 in Russia, Trahair cca 20 years later in Australia

Examples:	I_z	$K = \frac{\pi}{EI_{\omega}}$	$\sqrt{GI_t/EI_z}$						
I / I = 0.064	I_y	$\frac{K}{L}\sqrt{GI_t}$	0	0.125	0.25	0.5			
K = 1.029	0	$K \ge 0$	1	1	1	1			
$\frac{CL}{EL} = 0.110$		0		1.055	1.057	1.068			
$\sqrt{GI_t/EI_z} = 0.118$	0.1	1	1.054	1.056	1.061	1.081			
$\xi = 1.035$		3		1.062	1.089	1.217			
2) HD 360x162,		0		1.198	1.207	1.243			
$L = 4.5 \mathrm{m}$:	0.3	1	1.195	1.201	1.218	1.296			
$I_z / I_y = 0.360$		3		1.224	1.326	2.390			
<i>K</i> =1.526		0		1.589	1.612	1.715			
$\sqrt{GL/EL} = 0.078$	0.6	1	1.581	1.596	1.644	1.890			
$\xi = 1.255$		3		1.661	2.000	-			
ξ=1.255		5		1.001	2.000	-			

M_{cr} for any boundary conditions and any type of loading

• 1958 Mrázik, obtained coefficients for 11 cases:

$$M_{cr} = \beta_0 \frac{\pi^2 E I_z}{(k_z L)^2} \left\{ \left(z_g + \beta_1 z_j \right) + \sqrt{\left(z_g + \beta_1 z_j \right)^2 + \beta_2 \left[\frac{I_w}{I_z} \left(\frac{k_z}{k_w} \right)^2 + \frac{G I_t}{E I_z} \left(\frac{k_z L}{\pi} \right)^2 \right]} \right\}$$

• 1960 Clark, Hill, colected coefficients for 21 cases:

$$M_{cr} = C_1 \frac{\pi^2 EI_z}{(k_z L)^2} \left\{ (C_2 z_g + C_3 z_j) + \sqrt{(C_2 z_g + C_3 z_j)^2 + \frac{I_w}{I_z} \left[1 + \frac{GI_t}{EI_w} \left(\frac{k_z L}{\pi} \right)^2 \right]} \right\}$$

M_{cr} for any boundary conditions and any type of loading

• 1974 Djalaly, obtained coefficients for 37 cases:

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left\{ (C_2 z_g + C_3 z_j) + \sqrt{(C_2 z_g + C_3 z_j)^2 + \frac{I_w}{I_z} \left[1 + \frac{G I_t}{E I_w} \left(\frac{k_z L}{\pi} \right)^2 \right]} \right\}$$

• ENV 1993-1-1:1992 a ENV 1999-1-1:1998

$$M_{cr} = C_1 \frac{\pi^2 EI_z}{(k_z L)^2} \left[\pm (C_2 z_g \pm C_3 z_j) + \sqrt{(C_2 z_g \pm C_3 z_j)^2 + \frac{I_w}{I_z} (\frac{k_z}{k_w})^2 + \frac{GI_t}{EI_z} (\frac{k_z L}{\pi})^2} \right]$$

Relations between cofficients of different formulae

$$\beta_0 = C_1 C_2 , \qquad \beta_1 = C_3 / C_2 , \qquad \beta_2 = 1 / C_2^2 ,$$

$$C_1 = \beta_0 \sqrt{\beta_2} , \qquad C_2 = 1 / \sqrt{\beta_2} , \qquad C_3 = \beta_1 / \sqrt{\beta_2}$$

Formulae from ČSN and STN 73 1401

• cl. H.2: loading prependicular to axis of symmetry

• It is simplification of Mráziks formula

$$\kappa_1 = \beta_0, \ \kappa_2 = \beta_1$$

	Objeter	e' Uloženie					
Schéma zaťaženia	ohyb	v rovine	krútenie	$k_z = L_z / L$	$k_{\omega} = L_{\omega} / L$	κ _l	K2
11. J ₂ .	ZX	yx		E.		-	
A An	K K K	K K V	K V V	1,0 1,0 0,5	1,0 0,5 0,5	1,00 1,33 1,00	1,00 0,75 1,00
	K K V	K K V V	K V V V	1,0 1,0 0,5 0,5	1,0 0,5 0,5 0,5	(0,53) 0,52 0,29 1,61	4,68 6,33 11,29 1,36
4	K K K	K K V V	K V V V	1,0 1,0 0,5 0,5	1,0 0,5 0,5 0,5	0,76 0,87 0,50 1,23	3,26 2,83 4,99 1,00

Tabul'ka H.1 - Súčinitele κ₁, κ₂

Formulae from ČSN and STN 73 1401

cl. H.6: loading in the direction of symmetry axis

e, a_c are used with sign + or -

Formulae from ČSN and STN 73 1401

cl. H.6: loading in direction of symmetry axis

$$M_{er} = \frac{1}{\kappa_{M}^{2}} \frac{\pi^{2} EI_{z}}{(k_{z}L)^{2}} \left[\kappa (z_{g} + a_{e}) + \sqrt{\kappa^{2} (z_{g} + a_{e})^{2} + \frac{I_{w}}{I_{z}} (\frac{k_{z}}{k_{w}})^{2} + \frac{GI_{t}}{EI_{z}} (\frac{k_{z}L}{\pi})^{2}} \right]$$

It is again simplification of Mrazics formula

$$\beta_0 \approx \frac{\kappa}{\kappa_{\rm M}^2}, \qquad \beta_1 z_j \approx a_c, \qquad \beta_2 \approx \frac{1}{\kappa^2}$$

Nosník

Tvar momentovej plochy				L _{z1}	L
ĸ _M	1,0	0,94	0,86	0,75	0,63

Tabelle 8 — Druckkraftbeiwerte $k_{\rm c}$

Tabelle 10 — Momentenbeiwerte ζ

	Normalkraftverlauf	k _c		Zeile	Mom
1	max N	1,00	•	1	
2	max N	0,94	-	2	$\overline{}$
3	max N	0,86	-	3	\bigvee
4	$\max N \qquad \psi \max N \\ -1 \le \psi \le 1$	<u>1</u> 1,33 – 0,33 ψ	ł	4	max <i>M</i> -1

Zeile	Momentenverlauf	ζ
1	max M	1,00
2	max M	1,12
3	max M	1,35
4	$\max M \qquad \psi \max M \\ -1 \le \psi \le 1$	1,77 – 0,77 ψ

$$k_c = \frac{1}{\sqrt{\xi}}$$

Relations between cofficients of different formulae

M_{cr} according to DIN 18 800

$$M_{\mathrm{Ki},\mathrm{y}} = \zeta \cdot N_{\mathrm{Ki},\mathrm{z}} \left(\sqrt{c^2 + 0.25 z_\mathrm{p}^2} + 0.5 z_\mathrm{p} \right)$$

 $\lambda = \gamma \frac{\kappa_M L_{z1}}{I_{z1}} \qquad \qquad \lambda = \gamma \frac{2L_z}{h} \sqrt{\frac{I_y}{I_z}}$

 $\lambda = \pi \sqrt{E} W_{el,v} / M_{cr}$

 $M_{cr} = \pi^2 \, \frac{EW_{y,el}}{\lambda^2}$

Not correct things in European prestandards ENV 1993, ENV 1999

- Some coefficients C_i are incorrect (e.g. instead of C₁=0.411 it is used C₁=1.73,etc.)
- No information is given about used torsion boundary conditions (k_w=1) in the cases of end moments
- No information is given about used lateral bending boundary conditions (fixed is left beam end)

Not correct things in European prestandards ENV 1993, ENV 1999

- No definition of M_{cr} location (location is in middle of span)
- Influence of torsion stiffness and warping stiffness are not taken into account in calculation of C_1 coefficients
- For beams with nonsymmetric crosssections under nonsymmetric bending end moments are C_i coefficients incorrect

ENV 1993-1-1, ENV 1999-1-1

Tabulka F.1.1 Hodnoty součinitelů C ₁ , C ₂ a C ₃ v závislosti na velikosti součinitele k. Zatížení koncovými momenty												
Zatížení a	Pruběh	Hodnoty	Hodnoty součinitelů									
podepření	momentu	k	C ₁	C ₂	C ₃							
	$\psi = + 1$	1,0 0,7 0,5	1,000 1,000 1,000	-	1,000 1,113 1,144							
	$\psi = + 3/4$	1,0 0,7 0,5	1,141 1,270 1,305	-	0,998 1,565 2,283							
	$\psi = + 1/2$	1,0 0,7 0,5	1,323 1,473 1,514	-	0,992 1,556 2,271							
м ψ м (ф	$\psi = -1$	1,0 0,7 0,5	2,752 3,063 3,149	-	0,000 0,000 0,000							

ENV 1993-1-1, ENV 1999-1-1

Tabulka F.1.2 Hodnoty součinitelů C ₁ , C ₂ a C ₃ v závislosti na velikosti součinitele k. Případy příčného zatížení												
Zatížení a podmínky	Průběh ohybového	Hodnoty	Hodnoty součinitelů									
podepření	momentu	k	C ₁	C ²	C ₃							
Francesson M		1,0 0,5_	1,132 0,972	0,459 -0,304	0,525 0,980							
M M		1,0 0,5	1,285 0,712	1,562 0,652	0,753 1,070							
↓ ^F		1,0 0,5	1,365 1,070	0,553 0,432	1,730 3,050							
Ĵ ↓ F		1,0 0,5	1,565 0,938	1,267 0,715	2,640 4,800							
$F \downarrow F \downarrow F$		1,0 0,5	1,046 1,010	0,430 0,410	1,120 1,890							

Tab.13E Beam with concentrated central load F and boundary conditions $k_y = 1$, $k_z = 1$, $k_{\omega} = 1$

- **E** Exact values of \overline{M}_{cr} calculated by program IBDSQ
- **R** Ratio of approximate values \overline{M}_{cr} calculated by 3-coefficients ENV's formula

using ENV's $C_1 = 1.365$, $C_2 = 0.553$, $C_3 = 1.730$ and exact values \overline{M}_{cr} .

K	\overline{z}_{g}	E					\bar{z}_j						
n ot	~g	R	4	2	1	0.5	0	-0.5	-1	-2	-4		
	4	E	0.645	0.395	0.309	0.274	0.243	0.217	0.194	0.157	0.108		
	-4	R	20.138	9.844	2.779	1.650	1.211	0.998	0.879	0.761	0.688		
	2	E	1.588	0.934	0.662	0.547	0.450	0.370	0.305	0.215	0.124		
	-2	R	10.071	7.175	3.720	1.964	1.168	0.883	0.765	0.688	0.681		
	1	E	2.410	1.571	1.141	0.930	0.730	0.554	0.414	0.248	0.129		
	-1	R	7.257	5.195	3.256	1.996	1.103	0.782	0.690	0.676	0.706		
0	0	E	3.384	2.464	1.947	1.662	1.348	0.971	0.515	0.258	0.129		
0		R	5.612	3.912	2.614	1.796	1.013	0.643	0.712	0.750	0.761		
	1	E	4.429	3.471	2.911	2.582	2.143	1.020	0.515	0.258	0.129		
	1	R	4.627	3.204	2.239	1.667	1.080	0.984	0.975	0.886	0.827		
	2	E	5.497	4.492	3.859	3.428	2.642	1.020	0.515	0.258	0.129		
	2	R	4.002	2.808	2.067	1.665	1.342	1.699	1.472	1.079	0.904		
		E	7 606	6 121	5 /08	1 602	3 055	1 020	0.515	0 258	0 1 2 9		
		L	$0.9 \le R$	≤ 1.1	0.8	$R \leq R \leq 0.$	9 & 1.1 <	$< R \leq 1.2$	F	R < 0.8 &	R > 1.2		
$\overline{M}_{cr} =$	$\overline{M}_{cr} = \frac{M_{cr}}{M_{cr,0}}, M_{cr,0} = \frac{\pi}{k_z L} \sqrt{EI_z GI_t}, K_{\omega t} = \frac{\pi}{k_\omega L} \sqrt{\frac{EI_\omega}{GI_t}}, \overline{z}_g = \frac{\pi z_g}{k_z L} \sqrt{\frac{EI_z}{GI_t}}, \overline{z}_j = \frac{\pi z_j}{k_z L} \sqrt{\frac{EI_z}{GI_t}}$												

			in concent	rated cer	iti ai ioau	F and be	oundary o	condition	s $\kappa_y = 1$,	$\kappa_z = 1, \kappa_0$	$_{0} = 1$	V	-	E					\overline{z}_i				
	E -	Exact	t values of	f \overline{M}_{cr} cal	culated b	oy progra	m IBDS	Q				Kon	z_g	R	4	2	1	0.5	0	-0.5	-1	-2	-4
	R -	Ratio	o of approx	ximate v	alues \overline{M}_{i}	, calculat	ted by 3-	coefficie	nts ENV	's formul	a			E	1,101	0.740	0.621	0.572	0.530	0.492	0.459	0.403	0.323
		using	ENV's C	. =1.365	$C_{2} = 0.$	553. C. =	1.730 ar	nd exact y	values \overline{M}	ī.			-4	R	20,523	13.022	5.647	2.301	1.021	0.639	0.477	0.335	0.237
-		E	, 211100	1 1.000	, 01 0.	, 03	-			CF ·				F	2 028	1 308	1.043	0.935	0.841	0 761	0.691	0.580	0.431
Kot	\overline{z}_{g}	E					z _j						-2	R	12.040	8 757	4 035	2 553	1.009	0 544	0 383	0.262	0 189
	0	R	4	2	1	0.5	0	-0.5	-1	-2	-4			E	2 605	1 702	1.420	1 261	1.009	0.000	0.804	0.728	0.515
	-4	E	0.645	0.395	0.309	0.274	0.243	0.217	0.194	0.157	0.108		-1	D	2.095	1.792	1.420	1.201	0.000	0.999	0.320	0.720	0.515
		R	20.138	9.844	2.779	1.650	1.211	0.998	0.879	0.761	0.688			K	9.412	6.896	4.229	2.451	0.999	1.256	1.100	0.222	0.104
	-2	E	1.588	0.934	0.662	0.547	0.450	0.370	0.305	0.215	0.124	1	0	E	5.458	2.421	1.948	1.732	1.534	1.356	1.199	0.947	0.630
	-	R	10.071	7.175	3,720	1.964	1.168	0.883	0.765	0.688	0.681			R	7.600	5.481	3.533	2.233	0.987	0.437	0.278	0.182	0,138
	-1	E	2.410	1.571	1.141	0.930	0.730	0.554	0.414	0.248	0.129		1	E	4.286	3.162	2.613	2.349	2.096	1.858	1.640	1.271	0.795
		R	7.257	5.195	3.256	1.996	1.103	0.782	0,690	0.676	0.706		<u> </u>	R	6.347	4.486	2.973	1.996	0.976	0.399	0.233	0.146	0,114
0	0	E	3.384	2.464	1.947	1.662	1.348	0.971	0.515	0.258	0.129		2	E	5.155	3.973	3.376	3.079	2.785	2.498	2.222	1.725	1.032
	0	R	5.612	3.912	2.614	1.796	1.013	0.643	0.712	0.750	0.761		2	R	5.458	3.800	2.566	1.799	0.969	0.384	0.200	0.116	0.091
	1	E	4.429	3.471	2.911	2.582	2.143	1.020	0.515	0.258	0.129			E	6.945	5.695	5.045	4.708	4.367	3.855	2.999	1.968	1.105
	1	R	4.627	3.204	2.239	1.667	1.080	0.984	0.975	0.886	0.827		4	R	4.315	2.972	2.075	1.548	0.971	0.451	0.218	0.121	0.092
	2	E	5.497	4.492	3.859	3.428	2.642	1.020	0.515	0.258	0.129			E	1.980	1.502	1.319	1.240	1.167	1.102	1.041	0.936	0.774
	-	R	4.002	2.808	2.067	1.665	1.342	1.699	1.472	1.079	0.904		-4	R	11.487	6.642	3.192	1.767	1.007	0.674	0.510	0.357	0.246
	4	E	7.606	6.421	5.498	4.692	3.055	1.020	0.515	0.258	0.129			E	2.942	2.201	1.900	1.768	1.646	1.536	1.435	1.260	0.998
	-	R	3.287	2.430	1.989	1.837	2.073	4.048	4.224	1.861	1.112		-2	R	8,354	5.332	3.002	1.816	0.997	0.615	0.442	0,297	0.203
	-4	E	0.730	0.442	0.352	0.316	0.285	0.259	0.236	0.200	0.150			E	3.561	2.689	2.317	2.150	1.995	1.852	1.722	1.496	1.156
		R	17.807	8.850	2.546	1.509	1.093	0.886	0.765	0.634	0.526		-1	R	7.159	4.696	2.807	1.787	0.990	0.585	0.407	0.266	0.181
	-2	E	1.802	1.014	0.723	0.610	0.516	0.440	0.380	0.292	0.195	2	0	E	4.258	3.271	2.830	2.626	2.435	2.256	2.091	1.799	1.359
	-	R	8.874	6.627	3.452	1.831	1.074	0.785	0.652	0.537	0,462	2	0	R	6.203	4.133	2.590	1.728	0.983	0.559	0.374	0.235	0.160
0.25	$0.9 \le R \le 1.1$ $0.8 \le R < 0.9 \& 1.1 < R \le 1.2$ $R < 0.8 \& R > 1.2$ $\overline{M} = \frac{M_{cr}}{M_{cr}} = \frac{\pi}{M_{cr}} FL GL = K = \frac{\pi}{M_{cr}} \frac{EI_{\omega}}{R} = \frac{\pi z_g}{R} \frac{EI_z}{R} = \frac{\pi z_j}{R} \frac{EI_z}{R}$																						
	Ā	\overline{M}_{cr}	$=\frac{\Lambda}{M}$	1 _{cr}	, <i>M</i>	1 _{cr,0}	$=\frac{\pi}{1}$	$-\sqrt{E}$	EI _z G.	I_t ,	<i>K</i> _{ωt} =	$=\frac{\pi}{L}$			- - -, ī				<u>_</u> ,	$\overline{z}_j = \cdot$	$\frac{\pi z_j}{L}$	\sqrt{EI}	<u>z</u>
	Ā	И _{сі}	$=\frac{\Lambda}{M}$	1 cr cr,0	, M	0.381	$=\frac{\pi}{k_z}$	$\frac{1}{L}\sqrt{E}$	0.293	0.253	0.0 =	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$		-, Z		πz_g $k_z L$	$\sqrt{\frac{EI}{GI}}$	z_,	$\overline{z}_j = \cdot$	$\frac{\pi z_j}{k_z L}$	$\sqrt{\frac{EI}{GI}}$	Z1
	-4	E R	$=\frac{N}{M}$	1 cr cr,0 0.523	, M	0.381	$=\frac{\pi}{k_z}$	$\frac{1}{L}\sqrt{E}$	0.293	0.253 0.589	$K_{\omega t} = 0.197$	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$		-, Z	Eg =-	$\frac{\pi z_g}{k_z L}$	$\sqrt{\frac{EI}{GI}}$	z,	$\overline{Z}_j = \frac{3.871}{9.720}$	$\frac{\pi z_j}{k_z L}$	$\sqrt{\frac{EI}{GI}}$	Z 1 2.935 0.239
	-4	I CI	$=\frac{N}{M}$ 0.866 15.043 2.057	1 cr cr,0 0.523 7.632	0.421 2.386	0.381 0.381 1.445	$=\frac{\pi}{k_z}$	$\frac{1}{L}\sqrt{E}$	0.293 0.723 0.471	0.253 0.589 0.376	$K_{\odot t} = 0.197$ 0.474 0.264	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$		5.565 4.677	4.745 2.867	πz_g $k_z L$ $\frac{4.375}{1.839}$	√ <u>EI</u> √ <u>GI</u> 4.200 1.367	z, t	$\overline{Z}_{j} = \frac{3.871}{0.720}$	$\frac{\pi z_j}{k_z L}$	$\sqrt{\frac{EI}{GI}}$	z t 2.935 0.238
	-4 -2	E R E R	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785	<i>I</i> cr,0 0.523 7.632 1.151	0.421 2.386 0.833	0.381 0.381 1.445 0.712	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037	$-\sqrt{E}$ 0.318 0.844 0.535	0.293 0.723 0.471	0.253 0.589 0.376	$K_{\odot t} = 0.197$ 0.474 0.264	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$		5.565 5.565 4.677 6.180	4.745 2.867 5.285	t Z g k z L 4.375 1.839 4.876	$\sqrt{\frac{EI}{GI}}$	z, t 4.032 0.986 4.494	$\overline{Z}_{j} = -$ 3.871 0.720 4.313	πz_j $k_z L$ 3.717 0.550 4.140 0.526	√ <i>EI</i> √ <i>GI</i> 3.431 0.371 3.814 9.252	z t 2.935 0.238 3.247
	-4 -2	E R R R	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 7.2010	<i>I cr</i> <i>cr</i> ,0 0.523 7.632 1.151 5.881	0.421 2.386 0.833 3.121	0.381 1.445 0.712 1.730	$=\frac{\pi}{k_z}^{0.347}$	$\frac{1}{L}\sqrt{E}$ 0.318 0.844 0.535 0.752 0.752	0.293 0.723 0.471 0.615	0.253 0.589 0.376 0.489	$K_{\odot t} = 0.197$ 0.474 0.264 0.204	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$		1.1 5.565 4.677 6.180 4.357		t Z _g k _z L 4.375 1.839 4.876 1.798 5.430	$\sqrt{\frac{EI}{GI}}$ 4.200 1.367 4.682 1.355 5.215	z, 1 4.032 0.986 4.494 0.982 5.040	$\overline{Z}_{j} = -$ 3.871 0.720 4.313 0.711 4.807	πz_j $k_z L$ $\frac{3.717}{0.550}$ 4.140 0.536	√ <u>EI</u> √ <u>GI</u> 3.431 0.371 3.814 0.353 4.248	z 2.935 0.238 3.247 0.223
	-4 -2 -1	A _{CI} E R E E R	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.522	<i>I cr</i> ,0 0.523 7.632 1.151 5.881 1.846	0.421 2.386 0.833 3.121 1.331	0.381 1.445 0.712 1.730 1.112	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926	$\frac{0.318}{0.844}$ 0.535 0.752 0.776	0.293 0.723 0.471 0.615 0.657	0.253 0.589 0.376 0.489 0.425	0.197 0.474 0.264 0.401 0.316	$=\frac{\pi}{k_{\omega}L}$	√ <u></u> √ <u></u> −1 0 1	EI a EI a E R E R E R	5.565 4.677 6.180 4.357 6.835	4,745 2,867 5,285 2,733 5,875	t Zg kzL 4.375 1.839 4.876 1.798 5.430	↓ EI GI 4.200 1.367 4.682 1.357 5.215 1.330	z, 1 4.032 0.986 4.494 0.982 5.010 0.978	$\overline{Z}_{j} = -$ 3.871 0.720 4.313 0.711 4.807 0.705	πz_j $k_z L$ 3.717 0.550 4.140 0.536 4.614 0.535	√ EI √ GI 3.431 0.371 3.814 0.353 4.248 0.325	Z 2.935 0.238 3.247 0.223 3.604 0.208
	-4 -2 -1	E R E R E R R	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.820	<i>I cr</i> ,0 0.523 7.632 1.151 5.881 1.846 4.453	0.421 2.386 0.833 3.121 1.331 2.872	0.381 1.445 0.712 1.730 1.112 1.808	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926 1.023	0.318 0.844 0.535 0.752 0.776 0.682	0.293 0.723 0.471 0.615 0.657 0.538	0.253 0.589 0.376 0.489 0.491 0.425	0.197 0.474 0.264 0.401 0.316 0.359	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$	EI (C) EI (C) E R E R E R E R F	5.565 4.677 6.180 4.357 6.835 4.062	4.745 2.867 5.285 2.733 5.875 2.601	t Zg kzL 4.375 1.839 4.876 1.798 5.430 1.758 5.430	↓ <u>EI</u> <u>4.200</u> <u>1.367</u> <u>4.682</u> <u>1.355</u> <u>5.215</u> <u>1.339</u> <u>5.200</u>	z 4.032 0.986 4.494 0.982 5.010 0.978	$\overline{Z}_{j} = -$ 3.871 0.720 4.313 0.711 4.807 0.705 5.255	πz_j $k_z L$ $\frac{3.717}{0.550}$ 4.140 0.536 4.614 0.536 5.140	√ EI √ GI 3.431 0.371 3.814 0.353 4.248 0.353 4.248	Z 2.935 0.238 3.247 0.223 3.604 0.208
0.5	-4 -2 -1 0	E R E R E R E R E R E R	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.820 4.091	1 cr ,0 0.523 7.632 1.151 5.881 1.846 4.453 2.803	0.421 2.386 0.833 3.121 1.331 2.872 2.149	0.381 1.445 0.712 1.730 1.112 1.808 1.828	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926 1.023 1.520	0.318 0.844 0.535 0.752 0.776 0.682 1.241	0.293 0.723 0.471 0.615 0.657 0.538 1.006	0.253 0.589 0.376 0.489 0.491 0.425 0.684	0.197 0.474 0.264 0.316 0.359 0.390	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$	EI (C) EI (C) E R E R E R E R E R E R	5.565 4.677 6.180 4.357 6.835 4.069 7.535	4.745 2.867 5.285 2.733 5.875 2.602 6.515	t Zg kzL 4.375 1.839 4.876 1.798 5.430 1.753 6.035	↓ <u>EI</u> <u>4.200</u> <u>1.367</u> <u>4.682</u> <u>1.365</u> <u>5.215</u> <u>1.339</u> <u>5.800</u> <u>5.800</u>	z 4.032 0.986 4.494 0.982 5.010 0.978 5.575 0.978	$\overline{Z}_{j} = -$ 3.871 0.720 4.313 0.711 4.807 0.705 5.355 0.70	πz_j $k_z L$ 3.717 0.550 4.140 0.536 4.614 0.525 5.140 0.515	√ EI √ GI 3.431 0.371 3.814 0.353 4.248 0.337 4.733 0.322	Z 2.935 0.238 3.247 0.223 3.604 0.208 4.008 0.193
0.5	-4 -2 -1 0	E R E R E R E R R R R	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.820 4.091 4.648	1 cr ,0 0.523 7.632 1.151 5.881 1.846 4.453 2.803 3.456	0.421 2.386 0.833 3.121 1.331 2.872 2.149 2.407	0.381 1.445 0.712 1.730 1.112 1.808 1.828 1.702	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926 1.023 1.520 1.004	0.318 0.318 0.844 0.535 0.752 0.776 0.682 1.241 0.604	0.293 0.723 0.471 0.615 0.657 0.538 1.006 0.447	0.253 0.589 0.376 0.489 0.491 0.425 0.684 0.352	0.197 0.474 0.264 0.401 0.316 0.359 0.390 0.314	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$	EI a EI a E R E R E R E R E R E R E R E R	2, 2 5.565 4.677 6.180 4.357 6.835 4.069 7.535 3.811 2.025	2.001 4.745 2.867 5.285 2.733 5.875 2.602 6.515 2.479	t Zg kzL 4.375 1.839 4.876 1.798 5.430 1.753 6.035 1.705 1.705	↓ <u>EI</u> <u>4.200</u> <u>1.367</u> <u>4.682</u> <u>1.355</u> <u>5.215</u> <u>1.339</u> <u>5.800</u> <u>1.321</u> <u>7.105</u>	Z 4.032 0.986 4.494 0.982 5.010 0.978 5.575 0.975 6.845	$\overline{Z}_{j} = -$ 3.871 0.720 4.313 0.711 4.807 0.705 5.355 0.705 6.502	πz_j $k_z L$ 3.717 0.550 4.140 0.536 4.614 0.525 5.140 0.515 6.340	√ EI √ GI 3.431 0.371 3.814 0.353 4.248 0.337 4.733 0.322 5.855	Z 2.935 0.238 3.247 0.223 3.604 0.208 4.008 0.193 4.960
0.5	-4 -2 -1 0	A CI	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.820 4.091 4.648 5.229	1 cr ,0 0.523 7.632 1.151 5.881 1.846 4.453 2.803 3.456 3.890	0.421 2.386 0.833 3.121 1.331 2.872 2.149 2.407 3.185	0.381 1.445 0.712 1.730 1.112 1.808 1.828 1.702 2.820	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926 1.023 1.520 1.004 2.444	0.318 0.318 0.844 0.535 0.752 0.776 0.682 1.241 0.604 2.055	0.293 0.723 0.471 0.615 0.657 0.538 1.006 0.447 1.622	0.253 0.589 0.376 0.489 0.491 0.425 0.684 0.352 0.871	0.197 0.474 0.264 0.401 0.316 0.359 0.390 0.314 0.445	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$	EI (C) EI (C) EI (C) E R E R E R E R E R E R E P	2.020 5.565 4.677 6.180 4.357 6.835 4.069 7.535 3.811 9.035 3.270	2.001 4.745 2.867 5.285 2.733 5.875 2.602 6.515 2.479 7.915 2.269	t Zg kzL 4.375 1.839 4.876 1.798 5.430 1.753 6.035 1.705 7.370	↓ EI ↓ GI ↓ 200 ↓.367 ↓.682 ↓.355 5.215 ↓.339 5.800 ↓.321 7.105 ↓.282	Z 4.032 0.986 4.494 0.982 5.010 0.978 5.575 0.975 6.8450 0.964	$\overline{Z}_{j} = -$ 3.871 0.720 4.313 0.711 4.807 0.705 5.355 0.702 6.590 0.702	πz_j $k_z L$ 3.717 0.550 4.140 0.536 4.614 0.525 5.140 0.515 6.340 0.506	√ EI √ GI 3.431 0.371 3.814 0.353 4.248 0.337 4.733 0.322 5.855 0.299	Z 2.935 0.238 3.247 0.223 3.604 0.208 4.008 0.193 4.969 0.168
0.5	-4 -2 -1 0	A CI E R E R E R E R E R R E R	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.820 4.091 4.648 5.229 3.923	1 cr ,0 0.523 7.632 1.151 5.881 1.846 4.453 2.803 3.456 3.890 2.870	0.421 2.386 0.833 3.121 1.331 2.872 2.149 2.407 3.185 2.068	0.381 1.445 0.712 1.730 1.112 1.808 1.828 1.702 2.820 1.561	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926 1.023 1.520 1.004 2.444 1.005	0.318 0.318 0.844 0.535 0.752 0.776 0.682 1.241 0.604 2.055 0.564	0.293 0.723 0.471 0.615 0.657 0.538 1.006 0.447 1.622 0.376	0.253 0.589 0.376 0.489 0.491 0.425 0.684 0.352 0.871 0.325	0.197 0.474 0.264 0.401 0.316 0.359 0.390 0.314 0.445 0.299	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{F}{C}}$	EI EI R E R E R E R E R E R E R E R	2, 2 5.565 4.677 6.180 4.357 6.835 4.069 7.535 3.811 9.035 3.379	2.001 4.745 2.867 5.285 2.733 5.875 2.602 6.515 2.479 7.915 2.260	t Z _g k _z L 4.375 1.839 4.876 1.798 5.430 1.753 6.035 1.705 7.370 1.612	↓ <i>EI</i> <i>4.200</i> <i>1.367</i> <i>4.682</i> <i>1.355</i> <i>5.215</i> <i>1.339</i> <i>5.800</i> <i>1.321</i> <i>7.105</i> <i>1.282</i>	Z 4.032 0.986 4.494 0.982 5.010 0.978 5.575 0.975 6.845 0.969	$\overline{Z}_{j} = -$ 3.871 0.720 4.313 0.711 4.807 0.705 5.355 0.702 6.590 0.702	πz_j $k_z L$ 3.717 0.550 4.140 0.536 4.614 0.525 5.140 0.515 6.340 0.506	√ EI √ GI 3.431 0.371 3.814 0.353 4.248 0.337 4.733 0.322 5.855 0.298	Z 2.935 0.238 3.247 0.223 3.604 0.208 4.008 0.193 4.969 0.168
0.5	-4 -2 -1 0 1	A CI	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.820 4.091 4.648 5.229 3.923 6.382	1 cr 0 0.523 7.632 1.151 5.881 1.846 4.453 2.803 3.456 3.890 2.870 5.009	0.421 2.386 0.833 3.121 1.331 2.872 2.149 2.407 3.185 2.068 4.272	0.381 1.445 0.712 1.730 1.112 1.808 1.828 1.702 2.820 1.561 3.885	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926 1.023 1.520 1.004 2.444 1.005 3.484	0.318 0.318 0.844 0.535 0.752 0.776 0.682 1.241 0.604 2.055 0.564 2.663	0.293 0.723 0.471 0.615 0.657 0.538 1.006 0.447 1.622 0.376 1.622	0.253 0.589 0.376 0.489 0.491 0.425 0.684 0.352 0.684 0.352 0.871 0.325 0.871	0.197 0.474 0.264 0.401 0.316 0.359 0.390 0.314 0.445 0.299 0.445	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{F}{C}}$	EI EI R E R E R E R E R E R R E R	2.000 5.565 4.677 6.180 4.357 6.835 4.069 7.535 3.811 9.035 3.379 0.9 ≤ F	<i>x</i> , <i>y</i> = - <i>x</i> , <i>y</i> = - <i>y</i>	T Z g k z L 4.375 1.839 4.876 1.798 5.430 1.753 6.035 1.705 7.370 1.612	↓ EI ↓ GI ↓ 200 ↓.367 ↓.682 ↓.355 5.215 ↓.339 5.800 ↓.321 7.105 ↓.282 8 ≤ R < 0.	Z 4.032 0.986 4.494 0.982 5.010 0.978 5.575 0.975 6.845 0.969 9 & 1.1	Z j = - 3.871 0.720 4.313 0.711 4.807 0.705 5.355 0.702 6.590 0.702 < R ≤ 1.2	πz_j $k_z L$ 3.717 0.550 4.140 0.536 4.614 0.525 5.140 0.515 6.340 0.506 F	√ EI √ GI 3.431 0.371 3.814 0.353 4.248 0.337 4.733 0.322 5.855 0.298 ₹ < 0.8 &	Z 2.935 0.238 3.247 0.223 3.604 0.208 4.008 0.193 4.969 0.168 R > 1.2
0.5	-4 -2 -1 0 1 2	A CI	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.820 4.091 4.648 5.229 3.923 6.382 3.450	1 cr,0 0.523 7.632 1.151 5.881 1.846 4.453 2.803 3.456 3.890 2.870 5.009 2.526	0.421 2.386 0.833 3.121 1.331 2.872 2.149 2.407 3.185 2.068 4.272 1.880	0.381 1.445 0.712 1.730 1.112 1.808 1.828 1.702 2.820 1.561 3.885 1.489	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926 1.023 1.520 1.004 2.444 1.005 3.484 1.049	0.318 0.318 0.844 0.535 0.752 0.776 0.682 1.241 0.604 2.055 0.564 2.663 0.710	0.293 0.723 0.471 0.615 0.657 0.538 1.006 0.447 1.622 0.376 1.622 0.552	0.253 0.589 0.376 0.489 0.491 0.425 0.684 0.352 0.871 0.325 0.871 0.395	0.197 0.474 0.264 0.401 0.316 0.359 0.390 0.314 0.445 0.299 0.445 0.327	$=\frac{\pi}{k_{\omega}L}$	-1 0 1 2 4	E R E R E R E R E R R E R R E R R	2, 2 5.565 4.677 6.180 4.357 6.835 4.069 7.535 3.811 9.035 3.379 0.9 ≤ F	<i>g</i> = - <i>g</i> = - <i>g</i> = - <i>4.745</i> <i>2.867</i> <i>5.285</i> <i>2.733</i> <i>5.875</i> <i>2.602</i> <i>6.515</i> <i>2.479</i> <i>7.915</i> <i>2.260</i> <i>8.≤</i> 1.1	T Z g k z L 4.375 1.839 4.876 1.798 5.430 1.753 6.035 1.705 7.370 1.612	$\sqrt{\frac{EI}{GI}}$ 4.200 1.367 4.682 1.355 5.215 1.339 5.800 1.321 7.105 1.282 $B \le R < 0$	Z 4.032 0.986 4.494 0.982 5.010 0.978 5.575 0.975 6.845 0.969 9 & 1.1	$\overline{Z}_{j} = -$ 3.871 0.720 4.313 0.711 4.807 0.705 5.355 0.702 6.590 0.702 $< R \le 1.2$	πz_j $k_z L$ 3.717 0.550 4.140 0.536 4.614 0.525 5.140 0.515 6.340 0.506 F	√ EI √ GI 3.431 0.371 3.814 0.353 4.248 0.337 4.733 0.322 5.855 0.298 ₹ < 0.8 &	Z 2.935 0.238 3.247 0.223 3.604 0.208 4.008 0.193 4.969 0.168 R > 1.2
0.5	-4 -2 -1 0 1 2	E R E R E R E R E R E R R E R R E R E R	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.820 4.091 4.648 5.229 3.923 6.382 3.450 8.655	1 cr,0 0.523 7.632 1.151 5.881 1.846 4.453 2.803 3.456 3.890 2.870 5.009 2.526 7.167	0.421 2.386 0.833 3.121 1.331 2.872 2.149 2.407 3.185 2.068 4.272 1.880 6.288	0.381 1.445 0.712 1.730 1.112 1.808 1.828 1.702 2.820 1.561 3.885 1.489 5.766	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926 1.023 1.520 1.004 2.444 1.005 3.484 1.049 5.123	0.318 0.318 0.844 0.535 0.752 0.776 0.682 1.241 0.604 2.055 0.564 2.663 0.710 2.663	0.293 0.723 0.471 0.615 0.657 0.538 1.006 0.447 1.622 0.376 1.622 0.552 1.622	0.253 0.589 0.376 0.489 0.491 0.425 0.684 0.352 0.871 0.325 0.871 0.395 0.871	0.197 0.474 0.264 0.401 0.316 0.359 0.390 0.314 0.445 0.299 0.445 0.327 0.445	$=\frac{\pi}{k_{\omega}L}$	$\sqrt{\frac{H}{C}}$	E R E R E R E R E R R E R R r r	$\frac{1}{5.565}$ $\frac{1}{4.677}$ $\frac{1}{6.180}$ $\frac{1}{4.357}$ $\frac{1}{6.835}$ $\frac{1}{4.069}$ $\frac{1}{7.535}$ $\frac{1}{3.811}$ 9.035 $\frac{1}{3.379}$ $0.9 \le F$ $M_{cr,0} = -$	$\frac{1}{g} = -\frac{1}{g}$ $\frac{4.745}{2.867}$ $\frac{2.867}{5.285}$ $\frac{2.733}{5.875}$ $\frac{2.602}{6.515}$ $\frac{2.479}{7.915}$ $\frac{2.260}{2.260}$ $R \le 1.1$	πZ_g $k_z L$ 4.375 1.839 4.876 1.798 5.430 1.753 6.035 1.705 7.370 1.612 0.4 \overline{H}_L , K _m	$\sqrt{\frac{EI}{GI}}$ 4.200 1.367 4.682 1.355 5.215 1.339 5.800 1.321 7.105 1.282 $B \le R < 0$	Z 4.032 0.986 4.494 0.982 5.010 0.978 5.575 0.975 6.845 0.969 9 & 1.1 · EI ₀₀ , Z	$\overline{Z}_{j} = \frac{1.05}{3.871}$ $\frac{3.871}{0.720}$ 4.313 0.711 4.807 0.705 5.355 0.702 6.590 0.702 $< R \le 1.2$ $< R \le 1.2$	πz_j $k_z L$ 3.717 0.550 4.140 0.536 4.614 0.525 5.140 0.515 6.340 0.506 F El_z (Cit., 2	$\sqrt{\frac{EI}{GI}}$ 3.431 0.371 3.814 0.353 4.248 0.337 4.733 0.322 5.855 0.298 c < 0.8 & i = \frac{\pi z_j}{2}	Z 2.935 0.238 3.247 0.223 3.604 0.208 4.008 0.193 4.969 0.168 R > 1.2 EI_z
0.5	-4 -2 -1 0 1 2 4	E R E R E R E R E R R E R R E R R E R R E R	$=\frac{N}{M}$ 0.866 15.043 2.057 7.785 3.010 5.820 4.091 4.648 5.229 3.923 6.382 3.450 8.655 2.891	1 cr,0 0.523 7.632 1.151 1.846 4.453 2.803 3.456 3.890 2.809 2.526 7.167 2.181	0.421 2.386 0.833 3.121 1.331 2.872 2.149 2.407 3.185 2.068 4.272 1.880 6.288 1.745	0.381 1.445 0.712 1.730 1.112 1.808 1.828 1.702 2.820 1.561 3.885 1.489 5.766 1.504	$=\frac{\pi}{k_z}$ 0.347 1.047 0.614 1.037 0.926 1.023 1.520 1.004 2.444 1.005 3.484 1.049 5.123 1.250	0.318 0.844 0.535 0.752 0.776 0.682 1.241 0.604 2.055 0.564 2.663 0.710 2.663	0.293 0.723 0.723 0.471 0.615 0.657 0.538 1.006 0.447 1.622 0.376 1.622 0.552 1.622	0.253 0.589 0.376 0.489 0.491 0.425 0.684 0.352 0.871 0.325 0.871 0.395 0.871 0.395	0.197 0.474 0.264 0.401 0.316 0.359 0.390 0.314 0.445 0.299 0.445 0.327 0.445 0.327	$=\frac{\pi}{k_{\odot}L}$ 4 \overline{M}_{cr}	$\sqrt{\frac{E}{C}}$	$EI_{(0)}$ EI_{t} R R R R R R R R	$\begin{array}{c} & & & \\ & & & \\ \hline \\ \hline$	$\frac{1}{2}g = -\frac{1}{2}$ $\frac{1}{2}g = -\frac{1}{2}$	$z_g k_z L$ 4.375 4.375 1.839 4.876 1.798 5.430 1.753 6.035 1.705 7.370 1.612 0.0 $\overline{J}_{l_1}, K_{\infty}$	$\sqrt{\frac{EI}{GI}}$ 4.200 1.367 4.682 1.355 5.215 1.339 5.800 1.321 7.105 1.282 $B \le R < 0$	z 4.032 0.986 4.494 0.982 5.010 0.978 5.575 0.975 6.845 0.969 9 & 1.1 ·	$\overline{Z}_{j} = -\frac{3.871}{3.871}$ 0.720 4.313 0.711 4.807 0.705 5.355 0.702 6.590 0.702 $< R \le 1.2$ $g = \frac{\pi z_g}{k_z L}$	πz_j $k_z L$ 3.717 0.550 4.140 0.536 4.614 0.525 5.140 0.515 6.340 0.506 F $\frac{EI_z}{GI_t}, z$	$\sqrt{\frac{EI}{GI}}$ 3.431 0.371 3.814 0.353 4.248 0.337 4.733 0.322 5.855 0.298 x < 0.8 &	$ \begin{bmatrix} Z \\ 2.935 \\ 0.238 \\ 3.247 \\ 0.223 \\ 3.604 \\ 0.208 \\ 4.008 \\ 0.193 \\ 4.969 \\ 0.168 \\ R > 1.2 \\ \boxed{EI_z \\ GI_t} $

prEN 1993-3: October 2001

- (6) The sign convention for determining z_j , see Figure B.3, is:
 - z is negative for the compression flange
 - z_j is positive when the flange with the larger value of I₂ is in compression at the point of largest moment.

Draft note: According to Prof. Ivan Balaz this sentence is not correct and should be deleted – e.g. see fixed beams. z_j is clearly defined by $z_j = z_s - 0.5 \int_A (y^2 + z^2) \frac{z}{I_y} dA$

- (7) The sign convention for determining z_g is:
 - for gravity loads z_g is negative for loads applied above the shear centre
 - in the general case z_g is negative for loads acting towards the shear centre from their point of application.

Draft note: Prof. Ivan Balaz suggests that sign convention should be changed. Reference is also made to DIN 18800 T2 and the format of Eq.(19).

prENV 1993-3: October 2001

Draft note: Modifications proposed by Prof. Ivan Balaz

(8) For an I-section with unequal flanges:

$$I_{w} = \left(1 - \psi_{f}^{2}\right) I_{z} \left(\frac{h_{s}}{2}\right)^{2}$$

(B.7)

where $\psi_{f} = \frac{I_{fc} - I_{ft}}{I_{fc} + I_{ft}}$

Ifc is the second moment of area of the compression flange about the minor axis of the cross-section

 $I_{\rm fl}$ is the second moment of area of the tension flange about the minor axis of the cross-section

h_s is the distance between the shear centres of the flanges.

EN 1993-1-1 – no formulae for calculation of M_{cr} EN 1999-1-1 and NA to STN EN 1993-1-1 contain our proposals how to calculate M_{cr}

EN 1999-1-1 and NA to STN EN 1993-1-1

$$M_{\rm cr} = \frac{\pi^2 E I_z}{L^2} \sqrt{\frac{L^2 G I_t}{\pi^2 E I_z} + \frac{I_{\rm w}}{I_z}} = \frac{\pi \sqrt{E I_z G I_t}}{L} \sqrt{1 + \frac{\pi^2 E I_{\rm w}}{L^2 G I_t}}$$

$$M_{\rm cr} = \mu_{\rm cr} \, \frac{\pi \sqrt{EI_z GI_t}}{L}$$

$$\mu_{\rm cr} = \frac{C_1}{k_z} \left[\sqrt{1 + \kappa_{\rm wt}^2 + (C_2 \zeta_g - C_3 \zeta_j)^2} - (C_2 \zeta_g - C_3 \zeta_j) \right]^2$$

$$\kappa_{\rm wt} = \frac{\pi}{k_w L} \sqrt{\frac{EI_w}{GI_t}} \qquad \zeta_g = \frac{\pi z_g}{k_z L} \sqrt{\frac{EI_z}{GI_t}} \qquad \zeta_j = \frac{\pi z_j}{k_z L} \sqrt{\frac{EI_z}{GI_t}}$$

$$\mu_w = (1 - \psi_f^2) I_z (h_s / 2)^2 \qquad \psi_f = \frac{I_{\rm fc} - I_{\rm ft}}{I_{\rm fc} + I_{\rm ft}} \qquad z_g = z_a - z_s$$

$$z_j = z_s - \frac{0.5}{I_y} \int_A (y^2 + z^2) z \, dA \qquad z_j = 0.45 \psi_f h_s \left(1 + \frac{c}{2h_f}\right)$$

For symmetric cross-section to axis y-y is $z_j = 0$

C1, C2, C3 are cofficients depending on type of loading and boundary conditions

In STN 73 1401 positive axis z goes down, in STN EN goes up !!!

a) Loading in the direction of symmetry axis

Loading perpendicular to axis of symmetry: b) single symmetric, c) double- or point-symmetric

$$\mu_{\rm cr} = \frac{C_1}{k_z} \left[\sqrt{1 + \kappa_{\rm wt}^2 + (C_2 \zeta_g - C_3 \zeta_j)^2} - (C_2 \zeta_g - C_3 \zeta_j) \right]$$

(1) For beams with uniform cross-sections symmetrical about major axis, centrally symmetric and doubly symmetric cross-sections loaded perpendicular to the major axis in the plane going through the shear centre,

$$\mu_{\rm cr} = \frac{C_1}{k_{\rm z}} \left[\sqrt{1 + \kappa_{wt}^2 + (C_2 \zeta_g)^2} - C_2 \zeta_g \right]$$

(2) For end-moment loading $C_2 = 0$ and for transverse loads applied at the shear centre $z_g = 0$. For these cases:

$$\mu_{\rm cr} = \frac{C_1}{k_{\rm z}} \sqrt{1 + \kappa_{wt}^2}$$

$$\kappa_{\rm wt} = 0: \ \mu_{\rm cr} = C_1 / k_z$$

Table I.1 - Values of factors C_1 and C_3 corresponding to various end moment ratios ψ , values of buckling length factor k_z and cross-section parameters ψ_f and κ_{wt} . End moment loading of the simply supported beam with buckling length factors $k_y = 1$ for major axis bending and $k_w = 1$ for torsion

Loading and	Bending		Values of factors								
conditions.	diagram.	L 2)	<i>C</i> ₁	1)		C_{i}	3				
Cross-section monosymmetry factor ψ_{f}	End moment ratio ψ . <i>M</i> - ψM -side -side	κ _z	<i>C</i> _{1,0}	C _{1,1}	$\psi_{f} = -1$ $\zeta \perp$ $\zeta \top$	$-0.9 \le \psi_{\rm f} \le 0$ $\zeta \perp \zeta \perp$	0≤ψ _f ≤0,9 ČŢÇŢ	$\psi_{f} = 1$ $\zeta \square$ $\zeta \square$			
	M w_=+1	1,0	1,000	1,000		1,00	00				
M yM	$m_{\rm cr} = \varphi = \varphi$	0,7L	1,016	1,100		1,025	1,000				
		0,7R	1,016	1,100		1,025	1,000				
		0,5	1,000	1,127	1,019						
\leftarrow \sim \rightarrow $k = 1$	M = +3/4	1,0	1,139	1,141	1,000						
$\kappa_y = 1, \ \kappa_w = 1$	$M_{\rm cr}^{\rm r} \phi = +3.4$	0,7L	1,210	1,313		1,050 1,000					
Beam M-side:		0,7R	1,109	1,201		1,00	00				
$\mathcal{L}_{W_{1}} > 0$		0,5	1,139	1,285		1,01	17				
C T Me.	M w=+1/2	1,0	1,312	1,320	1,150		1,000				
C T w < 0	$\prod_{i=1}^{M_{cr}} \varphi = \mp 1/2$	0,7L	1,480	1,616		1,160	1,000				
		0,7R	1,213	1,317		1,00	00				
		0,5	1,310	1,482	1,150	1,150 1,000					
		· -									

1) $C_1 = C_{1,0} + (C_{1,1} - C_{1,0})\kappa_{wt} \le C_{1,1}$, $(C_1 = C_{1,0} \text{ for } \kappa_{wt} = 0, C_1 = C_{1,1} \text{ for } \kappa_{wt} \ge 1$) 2) 0.7L = left end fixed, 0.7R = right end fixed

Loading and	Bending					Values of factors		
conditions.	diagram.	L 2)	<i>C</i> ₁	1)		C_{i}	3	
Cross-section monosymmetry factor ψ_{f}	End moment ratio ψ . <i>M</i> - ψM -side -side	^K Z	<i>C</i> _{1,0}	C _{1,1}	ψ _f = −1 ζ⊥ ς⊤	$-0.9 \le \psi_{f} \le 0$ $\Box \Box \Box \Box$	0≤ψ _f ≤0,9 ČŢÇI	$\psi_{f} = 1$ $\zeta \top$ $\zeta \perp$
C = w < 0	M = -1/2	1,0	2,331	2,591	1,85	1,000	$1,3-1,2\psi_{\rm f}$	-0,70
ſ≻ ∏ ^v ŕz°		0,7L	3,078	3,399	2,70	1,450	$1 - 1, 2\psi_{f}$	-1,15
(T <i>w</i> ₄ ≥ 0	Ē	0,7R	1,711	1,897	1,45	0,780	$0,9 - 0,75 \psi_{\rm f}$	-0,53
≻_⊥_′'`		0,5	2,230	2,579	2,00	0,950	$0,75 - \psi_{\rm f}$	-0,85
	$M_{\rm er} = -3/4$	1,0	2,547	2,852	2,00	1,000	$0,55 - \psi_{f}$	-1,45
		0,7L	2,592	2,770	2,00	0,850	$0,23 - 0,9\psi_{\rm f}$	-1,55
$\psi_{\rm f} = \frac{I_{\rm fc} - I_{\rm ft}}{I_{\rm fc}}$	Ę	0,7R	1,829	2,027	1,55	0,700	$0,68 - \psi_{\rm f}$	-1,07
$I_{\rm fc} + I_{\rm ft}$		0,5	2,352	2,606	2,00	0,850	$0,35 - \psi_{\rm f}$	-1,45
	$M_{\rm cr}$ $\psi = -1$	1,0	2,555	2,733	2,00	$-\psi$	ſſ	-2,00
		0,7L	1,921	2,103	1,55	0,380	-0,580	-1,55
	Ę	0,7R	1,921	2,103	1,55	0,580	-0,380	-1,55
,		0,5	2,223	2,390	1,88	$0,\!125-0,\!7\psi_{\rm f}$	$-0,\!125-0,\!7\psi_{\rm f}$	-1,88

1) $C_1 = C_{1,0} + (C_{1,1} - C_{1,0})\kappa_{wt} \le C_{1,1}$, $(C_1 = C_{1,0} \text{ for } \kappa_{wt} = 0, C_1 = C_{1,1} \text{ for } \kappa_{wt} \ge 1$)

2) 0.7L = 1 left end fixed, 0.7R = right end fixed

For any ratio of end moments when $k_z=1$

 $C_1 = (0,310 + 0,428\psi + 0,262\psi^2)^{-0.5}$

Table I.2 - Values of factors C_1 , C_2 and C_3 corresponding to various transverse loading cases, values of buckling length factors k_y , k_z , k_w , cross-section monosymmetry factor ψ_f and torsion parameter κ_{wt} .

	Buckling length factors Values of factors										
Loading and support				$C_1^{(1)}$		<i>C</i> ₂			C_3		
conditions	k _y	k _z	k _w	C _{1,0}	<i>C</i> _{1,1}	\downarrow $\psi_{f} = -1$	$-0.9 \le \psi_{\rm f} \le 0.9$	$\psi_{f} = 1$	$\psi_{\mathbf{f}} = -1$		$\psi_{f} = 1$
<i>q</i>	1	1	1	1,127	1,132	0,33	0,459	0,50	0,93	0,525	0,38
	1	1	0,5	1,128	1,231	0,33	0,391	0,50	0,93	0,806	0,38
	1	0,5	1	0,947	0,997	0,25	0,407	0,40	0,84	0,478	0,44
	1	0,5	0,5	0,947	0,970	0,25	0,310	0,40	0,84	0,674	0,44
\mathbf{I}^{F}	1	1	1	1,348	1,363	0,52	0,553	0,42	1,00	0,411	0,31
	1	1	0,5	1,349	1,452	0,52	0,580	0,42	1,00	0,666	0,31
	1	0,5	1	1,030	1,087	0,40	0,449	0,42	0,80	0,338	0,31
1) $C_1 = C_{1,0}$	+ (C	-1,1 -	C _{1,0})k _{wt} ≤	$\leq C_{1,1}$, (<i>C</i> ₁ =	$= C_{1,0}$ for κ	$w_t = 0$, C ₁ =	$C_{1,1}$ for $\kappa_{\rm w}$	t ≥1)

2) Parameter ψ_{f} refers to the middle of the span.

3) Values of critical moments M_{cr} refer to the cross section, where M_{max} is located

						$\psi_{\rm f}=-1$	$-0.5 \leq \psi_{\rm f} \leq 0.5$	$\psi_{\mathbf{f}} = 1$	$\psi_{\rm f}=-1$	$-0.5 \leq \psi_{\rm f} \leq 0.5$	$\psi_{\mathbf{f}} = 1$
	0,5	1	1	2,576	2,608	1,00	1,562	0,15	1,00	-0,859	-1,99
$\overset{L}{\longmapsto}$	0,5	0,5	1	1,490	1,515	0,56	0,900	0,08	0,61	-0,516	-1,20
M _{cr}	0,5	0,5	0,5	1,494	1,746	0,56	0,825	0,08	0,61	0,002712	-1,20
↓ <i>F</i>	0,5	1	1	1,683	1,726	1,20	1,388	0,07	1,15	-0,716	-1,35
$ \stackrel{M_{\rm gr}}{\models} \stackrel{M_{\rm gr}}{\longrightarrow} $	0,5	0,5	1	0,936	0,955	0,69	0,763	0,03	0,64	-0,406	-0,76
	0,5	0,5	0,5	0,937	1,057	0,69	0,843	0,03	0,64	-0,0679	-0,76

1) $C_1 = C_{1,0} + (C_{1,1} - C_{1,0})\kappa_{wt} \le C_{1,1}$, $(C_1 = C_{1,0} \text{ for } \kappa_{wt} = 0, C_1 = C_{1,1} \text{ for } \kappa_{wt} \ge 1)$.

2) Parameter $\psi_{\rm f}$ refers to the middle of the span.

3) Values of critical moments M_{cr} refer to the cross section, where M_{max} is located

Table I.3 - Relative non-dimensional critical moment μ_{cr} for cantilever $(k_y = k_z = k_w = 2)$ loaded by concentrated end load *F*.

Loading and support	$\frac{\pi}{L}\sqrt{\frac{EI_{\rm W}}{GI_{\rm t}}} = k_{\rm W}\kappa_{\rm wf} =$	$\frac{\pi z_{\rm g}}{L} \sqrt{\frac{EI_{\rm z}}{GI_{\rm t}}}$	↓ (T) (C)	■ (C) (T)	$\frac{\pi z_{\rm j}}{L} \sqrt{\frac{E}{G}}$	$\frac{\overline{dI_z}}{dI_t} = k_z g$	$\zeta_j = \zeta_{j0}$	(C) ★ (T)	★ (T) (C)
conditions	$= \kappa_{wt0}$	$=k_z\zeta_g=\zeta_g$	-4	-2	-1	0	1	2	4
		4	0,107	0,156	0,194	0,245	0,316	0,416	0,759
		2	0,123	0,211	0,302	0,463	0,759	1,312	4,024
	0	0	0,128	0,254	0,478	1,280	3,178	5,590	10,730
		-2	0,129	0,258	0,508	1,619	3,894	6,500	11,860
		-4	0,129	0,258	0,511	1,686	4,055	6,740	12,240
		4	0,151	0,202	0,240	0,293	0,367	0,475	0,899
		2	0,195	0,297	0,393	0,560	0,876	1,528	5,360
	0,5	0	0,261	0,495	0,844	1,815	3,766	6,170	11,295
		-2	0,329	0,674	1,174	2,423	4,642	7,235	12,595
		-4	0,364	0,723	1,235	2,529	4,843	7,540	13,100
, ^F L		4	0,198	0,257	0,301	0,360	0,445	0,573	1,123
		2	0,268	0,391	0,502	0,691	1,052	1,838	6,345
$\stackrel{L}{\longleftrightarrow}$	1	0	0,401	0,750	1,243	2,431	4,456	6,840	11,920
111111		-2	0,629	1,326	2,115	3,529	5,635	8,115	13,365
M _{cr}		-4	0,777	1,474	2,264	3,719	5,915	8,505	13,960

a) For $z_j = 0$, $z_g = 0$ and $\kappa_{wt0} \le 8$: $\mu_{cr} = 1,27 + 1,14 \kappa_{wt0} + 0,017 \kappa_{wt0}^2$.

b) For $z_j = 0$, $-4 \le \zeta_g \le 4$ and $\kappa_{wt} \le 4$, μ_{cr} may be calculated also from formulae (I.7) and (I.8), where the following approximate values of the factors C_1 , C_2 should be used for the cantilever under tip load *F*:

$$\begin{split} C_1 &= 2,56 + 4,675 \,\kappa_{\rm wt} - 2,62 \,\kappa_{\rm wt}^2 + 0,5 \kappa_{\rm wt}^3, & \text{if } \kappa_{\rm wt} \leq 2 \\ C_1 &= 5,55 & \text{if } \kappa_{\rm wt} > 2 \\ C_2 &= 1,255 + 1,566 \,\kappa_{\rm wt} - 0,931 \,\kappa_{\rm wt}^2 + 0,245 \,\kappa_{\rm wt}^3 - 0,024 \kappa_{\rm wt}^4, & \text{if } \zeta_g \geq 0 \\ C_2 &= 0,192 + 0,585 \,\kappa_{\rm wt} - 0,054 \,\kappa_{\rm wt}^2 - (0,032 + 0,102 \,\kappa_{\rm wt} - 0,013 \,\kappa_{\rm wt}^2) \,\zeta_g, & \text{if } \zeta_g < 0 \end{split}$$

Table I.4 - Relative non-dimensional critical moment μ_{cr} for cantilever $(k_y = k_z = k_w = 2)$ loaded by uniformly distributed load q

Loading and support	$\frac{\pi}{L}\sqrt{\frac{EI_{\rm w}}{GI_{\rm t}}}$	$\frac{\pi z_{\rm g}}{L} \sqrt{\frac{EI_{\rm z}}{GI_{\rm t}}}$ $= k z \zeta_{\rm g}$	↓(T) ↓(C)	(C) ↑(T)	$\frac{\pi z_j}{L} \sqrt{\frac{1}{2}}$	$\frac{\overline{EI_z}}{GI_t} = k_z$	$\zeta_j = \zeta_j$	0 + (C)) <u></u> ±(T) (C)
conditions	$=\kappa_{w}\kappa_{wt} =$ $=\kappa_{wt0}$	$=\zeta_{g0}$	-4	-2	-1	0	1	2	4
		4	0,113	0,173	0,225	0,304	0,431	0,643	1,718
		2	0,126	0,225	0,340	0,583	1,165	2,718	13,270
	0	0	0,132	0,263	0,516	2,054	6,945	12,925	25,320
		-2	0,134	0,268	0,537	3,463	10,490	17,260	30,365
		-4	0,134	0,270	0,541	4,273	12,715	20,135	34,005
		4	0,213	0,290	0,352	0,443	0,586	0,823	2,046
		2	0,273	0,421	0,570	0,854	1,505	3,229	14,365
	0,5	0	0,371	0,718	1,287	3,332	8,210	14,125	26,440
		-2	0,518	1,217	2,418	6,010	12,165	18,685	31,610
		-4	0,654	1,494	2,950	7,460	14,570	21,675	35,320
<i>q</i>		4	0,336	0,441	0,522	0,636	0,806	1,080	2,483
		2	0,449	0,663	0,865	1,224	1,977	3,873	15,575
$\stackrel{L}{\longleftrightarrow}$	1	0	0,664	1,263	2,172	4,762	9,715	15,530	27,735
		-2	1,109	2,731	4,810	8,695	14,250	20,425	33,075
$M_{\rm cr}$		-4	1,623	3,558	6,025	10,635	16,880	23,555	36,875

a) For $z_j = 0$, $z_g = 0$ and $\kappa_{wt0} \le 8$: $\mu_{cr} = 2,04 + 2,68 \kappa_{wt0} + 0,021 \kappa_{wt0}^2$.

b) For $z_j = 0$, $-4 \le \zeta_g \le 4$ and $\kappa_{wt} \le 4$, μ_{cr} may be calculated also from formula (I.7) and (I.8), where the following approximate values of the factors C_1 , C_2 should be used for the cantilever under uniform load q:

$$\begin{split} C_1 &= 4,11+11,2 \; \kappa_{\rm wt} - 5,65 \; \kappa_{\rm wt}^2 + 0,975 \; \kappa_{\rm wt}^3, & \text{if} \; \kappa_{\rm wt} \leq 2 \\ C_1 &= 12 & \text{if} \; \kappa_{\rm wt} > 2 \\ C_2 &= 1,661+1,068 \; \kappa_{\rm wt} - 0,609 \; \kappa_{\rm wt}^2 + 0,153 \; \kappa_{\rm wt}^3 - 0,014 \; \kappa_{\rm wt}^4, & \text{if} \; \zeta_g \geq 0 \\ C_2 &= 0,535+0,426 \; \kappa_{\rm wt} - 0,029 \; \kappa_{\rm wt}^2 - (0,061+0,074 \; \kappa_{\rm wt} - 0,0085 \; \kappa_{\rm wt}^2) \; \zeta_g, & \text{if} \; \zeta_g < 0 \end{split}$$

Calculation of M_{cr} with the help of computer programs (no limitation)

- DRILL (emeritus Prof. Friemann, TU Darmstadt)
- BT II (Prof. Ostrerrieder)
- IBDSQ (Dickel, Prof. Rothert, ...)
- RSTAB (Dlubal)
- CalcMcr (Baláž)
- LTBeam (CTICM Paris)
- ALPHAcr (Lennert, TU Graz)
- many others

B. Real beam – with imperfections: Resistance of beam M_{b,Rd}

When it is not necessary to verify LTB of beam ?

- beam flange in compression is lateraly supported
- beam has closed profile (big torsional stiffness)
- beam is loaded in direction of minor stiffness

A

Osika OSIKA Die Espe

Breza BRZOZA Die Birke

Structure magazine, February 2008

Avoiding Structural Failures During Construction Part 2 By David B. Peraza, P.E. and Dennis M. McCann, Ph.D., P.E.

Figure 4: The Marcy Pedestrian Bridge following collapse during placement of the concrete deck.

Figure 5: Finite element model of the Marcy Pedestrian Bridge showing the undeformed shape and the global lateral-torsional buckling mode.

Figure 3: Light gage metal joists are vulnerable to lateral torsional buckling if their compression flange is not properly braced. Contractors may not be aware of the importance of attaching decking before loading a floor.

EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM

May 2005

EN 1993-1-1

ICS 91.010.30; 91.080.10

Supersedes ENV 1993-1-1:1992

English version

Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings

Eurocode 3: Calcul des structures en acier - Partie 1-1: Règles générales et règles pour les bâtiments Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau

6.3.2.1 Buckling resistance

$$M_{b,Rd} = \chi_{LT} W_{y} \frac{f_{y}}{\gamma_{M1}}$$

where W_y is the appropriate section modulus as follows:

- W_y = W_{pl,y} for Class 1 or 2 cross-sections
- W_y = W_{el,y} for Class 3 cross-sections
- W_y = W_{eff,y} for Class 4 cross-sections

 χ_{LT} is the reduction factor for lateral-torsional buckling.

6.3.2.2 Lateral torsional buckling curves – General case

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda}_{LT}^2}} \text{ but } \chi_{LT} \le 1,0$$

where $\Phi_{LT} = 0,5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0,2 \right) + \overline{\lambda}_{LT}^2 \right]$

 $\alpha_{\,\text{LT}}$ is an imperfection factor

$$\overline{\lambda}_{\text{LT}} = \sqrt{\frac{W_{y}f_{y}}{M_{\text{cr}}}}$$

Mer is the elastic critical moment for lateral-torsional buckling

Cross-section	Limits	Buckling curve
Delled Lesstings	$h/b \le 2$	а
Rolled I-sections	h/b > 2	b
Walded Leastings	$h/b \le 2$	с
werded 1-sections	h/b > 2	d
Other cross-sections	-	d

a a. . . .

a . . .

- - -

.

Buckling curve	а	b	с	d
Imperfection factor α_{LT}	0,21	0,34	0,49	0,76

Súčiniteľ klopenia χ_{LT} ako funkcia pomernej štíhlosti pri klopení λ_{-LT} a miery imperfekcie pri klopení α_{LT} podľa 1993-1-1, 6.3.2.2(1)-(3) (6.56):

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{M_{cr}}} \quad is \ the \ relative \ slenderness$$

$$W_y = \beta_w W_{pl}$$

$$\overline{\lambda}_{LT} = \sqrt{\frac{M_{pl}}{M_{cr}}} \sqrt{\beta_w}$$

$$\frac{\gamma_{M1}M_{b,Rd}}{M_{pl}} = \frac{\beta_w}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \left(\sqrt{\frac{M_{pl}}{M_{cr}}}\sqrt{\beta_w}\right)^2}}, \quad \text{if} \quad \sqrt{\frac{M_{pl}}{M_{cr}}} \ge \frac{\overline{\lambda}_{0,LT}}{\sqrt{\beta_w}},$$

$$\frac{\gamma_{M1}M_{b,Rd}}{M_{pl}} = \beta_w$$

$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\sqrt{\frac{M_{pl}}{M_{cr}}} \sqrt{\beta_w} - \overline{\lambda}_{0,LT} \right) + \left(\sqrt{\frac{M_{pl}}{M_{cr}}} \sqrt{\beta_w} \right)^2 \right]$$

Pomerná odolnosť nosníka $\chi_{LTel} = M_{bRd} / (M_{el} / \gamma_{M1})$ ako funkcia elastickej pomernej štíhlosti pri klopení _{LTel}, pomerného prierezového modulu α_W a miery imperfekcie pri klopení α_{LT} podľa EN 1993-1-1, 6.3.2.2(1)-(3) (6.56):

štíhlosti: p = 0.184 f = 0.22

Alfa LT = 0.21

- - Weff / Wel = 0.824

Pomerná odolnosť nosníka $\chi_{LTel} = M_{bRd} / (M_{el} / \gamma_{M1})$ ako funkcia elastickej pomernej štíhlosti pri klopení λ_{LTel} , pomerného prierezového modulu α_W a miery imperfekcie pri klopení α_{LT} podľa EN 1993-1-1, 6.3.2.2(1)-(3) (6.56):

štíhlosti: *p* = 0.184 *f* = 0.22

Wpl / Wel = 1.176

(4) For slendernesses $\overline{\lambda}_{LT} \le \overline{\lambda}_{LT,0}$ (see 6.3.2.3) or for $\frac{M_{Ed}}{M_{or}} \le \overline{\lambda}_{LT,0}^2$

lateral torsional buckling

effects may be ignored and only cross sectional checks apply.

Súčiniteľ klopenia χ_{LT} ako funkcia pomernej štíhlosti pri klopení λ_{-LT} a miery imperfekcie pri klopení α_{LT} podľa 1993-1-1, 6.3.2.2(1)-(3) (6.56) s využitím 6.3.2.2(4):

Pomerná odolnosť nosníka $\chi_{LTelm} = M_{bRd} / (M_{el} / \gamma_{M1})$ ako funkcia elastickej pomernej štíhlosti pri klopení λ_{LTel} , pomerného prierezového modulu α_W a miery imperfekcie pri klopení α_{LT} podľa EN 1993-1-1, 6.3.2.2(4) (6.56):

Miera imperfekcie: $\alpha := 0.76$

štíhlosti: p = 0.369 f = 0.441

6.3.2.3 Lateral torsional buckling curves for rolled sections

or equivalent welded sections

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2}} \text{ but } \begin{cases} \chi_{LT} \leq 1,0 \\ \chi_{LT} \leq \frac{1}{\overline{\lambda}_{LT}^2} \end{cases}$$
$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0} \right) + \beta \overline{\lambda}_{LT}^2 \right]$$
$$\overline{\lambda}_{LT,0} = 0.4 \text{ (maximum value)}$$
$$\beta = 0.75 \text{ (minimum value)}$$

Cross-section	Limits	Buckling curve
Polled L sections	$h/b \leq 2$	b
Koned 1-sections	h/b > 2	с
Wolded L sections	$h/b \le 2$	c
werden i-sections	h/b > 2	d

D 11'		1	1	1
Buckling curve	a	b	c	d
Imperfection factor α_{LT}	0,21	0,34	0,49	0,76

Súčiniteľ klopenia χ_{LT} ako funkcia miery imperfekcie pri klopení α_{LT} = 0.21, parametra β = 0.75, pomernej štíhlosti pri klopení λ_{-LT} = 0 až 2 a parametra $\lambda_{-LT,0}$ = 0.2 až 0.4 podľa EN 1993-1-1, 6.3.2.3(1), (6.57):

Súčiniteľ klopenia χ_{LT} ako funkcia miery imperfekcie pri klopení α_{LT} = 0.76, parametra β = 0.75, pomernej štíhlosti pri klopení λ_{-LT} = 0 až 2 a parametra $\lambda_{-LT,0}$ = 0.2 až 0.4 podľa EN 1993-1-1, 6.3.2.3(1), (6.57):

Súčiniteľ klopenia χ_{LT} ako funkcia miery imperfekcie pri klopení α_{LT} = 0.21, parametra $\lambda_{-LT.0}$ = 0.4 , pomernej štíhlosti pri klopení λ_{-LT} = 0 až 2 a parametra β = 0.75 až 1.0 podľa EN 1993-1-1, 6.3.2.3(1), (6.57):

Súčiniteľ klopenia χ_{LT} ako funkcia miery imperfekcie pri klopení α_{LT} = 0.76, parametra $\lambda_{-LT.0}$ = 0.2, pomernej štíhlosti pri klopení λ_{-LT} = 0 až 2 a parametra β = 0.75 až 1.0 podľa EN 1993-1-1, 6.3.2.3(1), (6.57):

$$\chi_{\text{LT,mod}} = \frac{\chi_{\text{LT}}}{f}$$
 ale $\chi_{\text{LT,mod}} \leq 1$

 $f = 1 - 0.5(1 - k_c)[1 - 2.0(\overline{\lambda}_{LT} - 0.8)^2]$ ale $f \le 1.0$

Interval in which increasing of reduction coefficient χ_{LT} by factor f is effective

 $max[\overline{\lambda}_{LT,0}; 0,1] \approx max[\overline{\lambda}_{LT,0}; 0,8 - \sqrt{0,5}] \leq \overline{\lambda}_{LT} \leq 0,8 + \sqrt{0,5} \approx 1,5$

$1 \le 1/f \le 1,5$

$$\overline{\lambda}_{LT,cr} = \frac{\alpha_{LT}}{2(1-\beta)} + \sqrt{\left(\frac{\alpha_{LT}}{2(1-\beta)}\right)^2 - 2\left(\frac{\alpha_{LT}}{2(1-\beta)}\right)\overline{\lambda}_{LT,0} + 1}$$

Grafické priebehy funkcií

Parameter *f* ako funkcia pomernej štíhlosti λ_{-LT} a korekčného faktora k_c :

Vzperné krivky klopenia a:

$$\alpha := 0.21$$
 $\beta := 0.75$ $\lambda_{LT.0} := 0.4$

Parameter *β* = 0.75, parameter $λ_{-LT.0}$ = 0.4 β := 0.75 $λ_{LT.0} := 0.4$

Vzperné krivky klopenia a (α_{LT} = 0.21): α_{IT} := 0.21

• • • • Ideálny nosník (alfa_LT = 0)

6.3.2.4 Simplified assessment methods for beams with restraints in buildings

$$\overline{\lambda}_{f} = \frac{k_{c}L_{c}}{i_{f,z}\lambda_{1}} \leq \overline{\lambda}_{c0} \frac{M_{c,Rd}}{M_{y,Ed}}$$

 $M_{b,Rd} = k_{f\ell} \chi \ M_{c,Rd} \quad but \quad M_{b,Rd} \le M_{c,Rd}$

Theory of the 2. order of beams with imperfection

5.3.4 Member imperfections

(3) For a second order analysis taking account of lateral torsional buckling of a member in bending the imperfections may be adopted as $ke_{0,d}$, where $e_{0,d}$ is the equivalent initial bow imperfection of the weak axis of the profile considered. In general an additional torsional imperfection need not to be allowed for.

Buckling curve	elastic analysis	plastic analysis
acc. to Table 6.1	e ₀ / L	e ₀ / L
a ₀	1 / 350	1 / 300
a	1 / 300	1 / 250
b	1 / 250	1 / 200
с	1 / 200	1 / 150
d	1 / 150	1 / 100

Table 6.1: Imperfection factors for buckling curves

Buckling curve	a ₀	а	b	с	d
Imperfection factor α	0,13	0,21	0,34	0,49	0,76

					Bucklin	g curve
Cross section		Limits		Buckling about axis	S 235 S 275 S 355 S 420	S 460
		- 1,2	$t_f \le 40 \text{ mm}$	y - y z - z	a b	a0 a0
ections	sctions	< q/ų	$40 \text{ mm} \le t_f \le 100$	y - y z - z	b c	a a
Bolled s	1,2	$t_{\rm f} \leq 100~{\rm mm}$	y - y z - z	b c	a a	
	h/b≤	$t_{f} > 100 \text{ mm}$	y - y z - z	d d	c c	

Table 6.2: Selection of buckling curve for a cross-section

Table 6.4: Recommended values for lateral torsional buckling curves for crosssections using equation (6.56)

Cross-section	Limits	Buckling curve
Dallad L sections	$h/b \le 2$	а
Rolled 1-sections	h/b > 2	b
Waldad L sections	$h/b \le 2$	c
werded 1-sections	h/b > 2	d
Other cross-sections	-	d

Table 6.5: Recommendation for the selection of lateral torsional buckling curve for cross sections using equation (6.57)

Cross-section	Limits	Buckling curve
Polled L sections	$h/b \le 2$	b
Rolled 1-sections	h/b > 2	c
Welded I-sections	$h/b \le 2$	c
	h/b > 2	d

Non-dimensional slenderness

Non-dimensional slenderness

Reduction factors χ_{LT}

Eurocode: Perry – Robertson formula

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda}_{LT}^2}} \quad \text{for} \quad 0.4 < \overline{\lambda}_{LT}$$
(3)
where $\phi_{LT} = 0.5 \left(1 + \eta_{LT} + \overline{\lambda}_{LT}^2\right)$
 $\eta_{LT} = \alpha_{LT} \left(\overline{\lambda}_{LT} - \overline{\lambda}_{P}\right)$ is the Perry factor (symbols η_{LT} and $\overline{\lambda}_{P}$ are not used in ENV
1993-1-1),
 $\overline{\lambda}_{LT} = \sqrt{\frac{\beta_w M_{pl}}{M_{cr}}}$ is the non-dimensional slenderness.

DIN 18 800: Merchant – Rankine formula

$$0.4 < \overline{\lambda}_{LT} \qquad \qquad \chi_{LT} = \left(\frac{1}{1+\overline{\lambda}^{2n}}\right)^{\frac{1}{n}} \qquad \qquad n = 2.5$$

Fig. 1 Comparison of design curves for lateral torsional buckling of rolled beams. Values in brackets mean: a) $(\overline{\lambda}_p, \alpha_{LT} < 1)$ in Perry-Robertson approach, b) $(\overline{\lambda}_p, n \ge 1)$ in Merchant-Rankine approach, c) $(\overline{\lambda}_p, \overline{\lambda}_{EULER})$ for AIJ, AISC, CAN, NBR and STN codes, d) $[\overline{\lambda}_{LIM}]$. For $\overline{\lambda}_{LT} \le \overline{\lambda}_{LIM}$ is $\chi_{LT} = 1$. There is step in point $\overline{\lambda}_{LIM}$ if $\overline{\lambda}_p \ne \overline{\lambda}_{LIM}$.

Fig. 1 Comparison of design curves for lateral torsional buckling of rolled beams. Values in brackets mean: a) ($\overline{\lambda}_p$, $\alpha_{LT} < 1$) in Perry-Robertson approach, b) ($\overline{\lambda}_p$, $n \ge 1$) in Merchant-Rankine approach, c) ($\overline{\lambda}_p$, $\overline{\lambda}_{EULER}$) for AIJ, AISC, CAN, NBR and STN codes, d) [$\overline{\lambda}_{LIM}$]. For $\overline{\lambda}_{LT} \le \overline{\lambda}_{LIM}$ is $\chi_{LT} = 1$. There is step in point $\overline{\lambda}_{LIM}$ if $\overline{\lambda}_p \neq \overline{\lambda}_{LIM}$.

Fig. 1 Comparison of design curves for lateral torsional buckling of rolled beams. Values in brackets mean: a) ($\overline{\lambda}_p$, $\alpha_{LT} < 1$) in Perry-Robertson approach, b) ($\overline{\lambda}_p$, $n \ge 1$) in Merchant-Rankine approach, c) ($\overline{\lambda}_p$, $\overline{\lambda}_{EULER}$) for AIJ, AISC, CAN, NBR and STN codes, d) [$\overline{\lambda}_{LIM}$]. For $\overline{\lambda}_{LT} \le \overline{\lambda}_{LIM}$ is $\chi_{LT} = 1$. There is step in point $\overline{\lambda}_{LIM}$ if $\overline{\lambda}_p \neq \overline{\lambda}_{LIM}$.

Fig. 2 Comparison of design curves for lateral torsional buckling of welded beams. Values in brackets mean: a) ($\overline{\lambda}_p$, $\alpha_{LT} < 1$) in Perry-Robertson approach, b) ($\overline{\lambda}_p$, $n \ge 1$) in Merchant-Rankine approach, c) ($\overline{\lambda}_p$, $\overline{\lambda}_{EULER}$) for AIJ, AISC, CAN, NBR and STN codes, d) [$\overline{\lambda}_{LIM}$]. For $\overline{\lambda}_{LT} \le \overline{\lambda}_{LIM}$ is $\chi_{LT} = 1$. There is step in point $\overline{\lambda}_{LIM}$ if $\overline{\lambda}_p \neq \overline{\lambda}_{LIM}$.

Fig. 2 Comparison of design curves for lateral torsional buckling of welded beams. Values in brackets mean: a) ($\overline{\lambda}_{p}$, $\alpha_{LT} < 1$) in Perry-Robertson approach, b) ($\overline{\lambda}_{p}$, $n \ge 1$) in Merchant-Rankine approach, c) ($\overline{\lambda}_{p}$, $\overline{\lambda}_{EULER}$) for AIJ, AISC, CAN, NBR and STN codes, d) [$\overline{\lambda}_{LIM}$]. For $\overline{\lambda}_{LT} \le \overline{\lambda}_{LIM}$ is $\chi_{LT} = 1$. There is step in point $\overline{\lambda}_{LIM}$ if $\overline{\lambda}_{p} \ne \overline{\lambda}_{LIM}$.

Fig. 2 Comparison of design curves for lateral torsional buckling of welded beams. Values in brackets mean: a) ($\overline{\lambda}_p$, $\alpha_{LT} < 1$) in Perry-Robertson approach, b) ($\overline{\lambda}_p$, $n \ge 1$) in Merchant-Rankine approach, c) ($\overline{\lambda}_p$, $\overline{\lambda}_{EULER}$) for AIJ, AISC, CAN, NBR and STN codes, d) [$\overline{\lambda}_{LIM}$]. For $\overline{\lambda}_{LT} \le \overline{\lambda}_{LIM}$ is $\chi_{LT} = 1$. There is step in point $\overline{\lambda}_{LIM}$ if $\overline{\lambda}_p \neq \overline{\lambda}_{LIM}$.

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 1999-1-1

February 2007

ICS 91.010.30; 91.080.10

Supersedes ENV 1999-1-1:1998

English Version

Eurocode 9 - Design of aluminium structures - Part 1-1: General structural rules

Eurocode 9 - Calcul des structures en aluminium - Partie 1-1: Règles générales Eurocode 9 - Bemessung und Konstruktion von Aluminiumtragwerken - Teil 1-1: Allgemeine Bemessungsregeln

Resistance of cross-section

$$\frac{M_{\rm Ed}}{M_{\rm Rd}} \le 1,0$$

 $M_{u,Rd} = W_{net} f_u / \gamma_{M2}$ in a net section and

 $M_{c,Rd} = \alpha W_{el} f_o / \gamma_{M1}$ at each cross-section

Table 6.4 - Values of shape factor α

Cross-section class	Without welds	With longitudinal welds		
1	$W_{\rm pl}$ / $W_{\rm el}$ *)	$W_{\rm pl,haz}$ / $W_{\rm el}$ *)		
2	$W_{\rm pl}$ / $W_{\rm el}$	$W_{\rm pl,haz}$ / $W_{\rm el}$		
3	$\alpha_{3,u}$	$\alpha_{3,w}$		
4	$W_{\rm eff} / W_{\rm el}$	W _{eff,haz} / W _{el}		
*) NOTE These formulae are on the conservative side. For more refined value, recommendations are given in Annex F				

Figure 6.6 - The extent of heat-affected zones (HAZ)

6.3.2.1 Buckling resistance

$$\frac{M_{\rm Ed}}{M_{\rm b,Rd}} \le 1.0$$

$M_{b,Rd} = \chi_{LT} \alpha W_{el,y} f_o / \gamma_{M1}$

6.3.2.2 Reduction factor for lateral torsional buckling

$$\chi_{\rm LT} = \frac{1}{\phi_{\rm LT} + \sqrt{\phi_{\rm LT}^2 - \overline{\lambda}_{\rm LT}^2}} \quad \text{but } \chi_{\rm LT} \le 1$$

where:

$$\phi_{\text{LT}} = 0.5 \left[1 + \alpha_{\text{LT}} \left(\overline{\lambda}_{\text{LT}} - \overline{\lambda}_{0,\text{LT}} \right) + \overline{\lambda}_{LT}^2 \right]$$

- $\alpha_{\rm LT}$ is an imperfection factor
- $\overline{\lambda}_{LT}$ is the relative slenderness
- $\overline{\lambda}_{0,LT}$ is the limit of the horizontal plateau
- $M_{\rm cr}$ is the elastic critical moment for lateral-torsional buckling.

(2) The value of α_{LT} and $\overline{\lambda}_{0,LT}$ should be taken as: $\alpha_{LT} = 0.10$ and $\overline{\lambda}_{0,LT} = 0.6$ for class 1 and 2 cross-sections $\alpha_{LT} = 0.20$ and $\overline{\lambda}_{0,LT} = 0.4$ for class 3 and 4 cross-sections.

1 Class 1 and 2 cross sections,

2 Class 3 and 4 cross sections

Figure 6.13 - Reduction factor for lateral-torsional buckling

