Lateral torsional stability of timber beams

Baláž Ivan & Koleková Yvona Faculty of Civil Engineering Slovak University of Technology in Bratislava Slovak Republic, EU

M2D2015, Ponta Delgada, Azores, 26-30 July 2015

Lateral Torsional Buckling

A

Osika Die Espe ASPEN OSIKA

Breza

Die Birke

BIRCH

BRZOZA

LTB of member will occur even if it is loaded in the plane of minor stiffness when point of load application is too high over shear center

This phenomenon is called "mosquito wings" effect

Structure magazine, February 2008

Avoiding Structural Failures During Construction Part 2 By David B. Peraza, P.E. and Dennis M. McCann, Ph.D., P.E.

Figure 4: The Marcy Pedestrian Bridge following collapse during placement of the concrete deck.

Elastic critical moment M_{cr}

"fork" boundary conditions, uniform bending moment M, uniform nonwarping cross-section: warping stiffness $EI_w = 0 \text{ kNm}^4$

Taking into account all influences

$$M_{cr} = \frac{\pi \sqrt{EI_z GI_t}}{L}$$

$$M_{cr} = \mu_{cr} \frac{\pi \sqrt{EI_z GI_t}}{L}$$

$$\mu_{\rm cr} = \frac{C_1}{k_z} \left[\sqrt{1 + \kappa_{\rm wt}^2 + (C_2 \zeta_g - C_3 \zeta_j)^2} - (C_2 \zeta_g - C_3 \zeta_j) \right]^2$$

$$\kappa_{\rm wt} = \frac{\pi}{k_w L} \sqrt{\frac{EI_w}{GI_t}} \qquad \zeta_g = \frac{\pi z_g}{k_z L} \sqrt{\frac{EI_z}{GI_t}} \qquad \zeta_j = \frac{\pi z_j}{k_z L} \sqrt{\frac{EI_z}{GI_t}}$$

$$\mu_w = (1 - \psi_f^2) I_z (h_s / 2)^2 \qquad \psi_f = \frac{I_{\rm fc} - I_{\rm ft}}{I_{\rm fc} + I_{\rm ft}} \qquad z_g = z_a - z_s$$

$$z_j = z_s - \frac{0.5}{I_y} \int_A (y^2 + z^2) z \, dA \qquad z_j = 0.45 \psi_f h_s \left(1 + \frac{c}{2h_f}\right)$$

For symmetric cross-section to axis y-y is $z_j = 0$

C1, C2, C3 are coefficients depending on type of loading and boundary conditions

$$\mu_{\rm cr} = \frac{C_1}{k_z} \left[\sqrt{1 + \kappa_{\rm wt}^2 + (C_2 \zeta_g - C_3 \zeta_j)^2} - (C_2 \zeta_g - C_3 \zeta_j) \right]$$

(1) For beams with uniform cross-sections symmetrical about major axis, centrally symmetric and doubly symmetric cross-sections loaded perpendicular to the major axis in the plane going through the shear centre,

$$\mu_{\rm cr} = \frac{C_1}{k_{\rm z}} \left[\sqrt{1 + \kappa_{wt}^2 + (C_2 \zeta_g)^2} - C_2 \zeta_g \right]$$

(2) For end-moment loading $C_2 = 0$ and for transverse loads applied at the shear centre $z_g = 0$. For these cases:

$$\mu_{\rm cr} = \frac{C_1}{k_{\rm z}} \sqrt{1 + \kappa_{wt}^2}$$

$$\kappa_{\rm wt} = 0: \ \mu_{\rm cr} = C_1 / k_z$$

ENV 1993-1-1, ENV 1999-1-1

Tabulka F.1.1 Hodnoty součinitelů C ₁ , C ₂ a C ₃ v závislosti na velikosti součinitele k. Zatížení koncovými momenty									
Zatížení a	Pruběh	Hodnoty	H SOL	Hodnoty oučinitelů					
podepření	momentu	k	C ₁	C ₂	C ₃				
	$\psi = + 1$	1,0 0,7 0,5	1,000 1,000 1,000	-	1,000 1,113 1,144				
	$\psi = + 3/4$	1,0 0,7 0,5	1,141 1,270 1,305	-	0,998 1,565 2,283				
	$\psi = + 1/2$	1,0 0,7 0,5	1,323 1,473 1,514	-	0,992 1,556 2,271				
м ψм (, ======,)	$\psi = -1$	1,0 0,7 0,5	2,752 3,063 3,149	-	0,000 0,000 0,000				

Table I.1 - Values of factors C_1 and C_3 corresponding to various end moment ratios ψ , values of buckling length factor k_z and cross-section parameters ψ_f and κ_{wt} . End moment loading of the simply supported beam with buckling length factors $k_y = 1$ for major axis bending and $k_w = 1$ for torsion

Loading and	Bending					Values of factors			
conditions.	diagram.	k _z ²⁾	$C_1^{(1)}$		C_3				
Cross-section monosymmetry factor ψ_{f}	End moment ratio ψ . <i>M</i> - ψM -side -side		<i>C</i> _{1,0}	C _{1,1}	$\psi_{f} = -1$ $\zeta \perp$ $\zeta \top$	$-0.9 \le \psi_{f} \le 0$ $\Box \Box \Box$	0≤ψ _f ≤0,9 ČŢÇI	$\psi_{f} = 1$ $\zeta \top$ $\zeta \perp$	
$M \qquad \psi M \qquad $	<i>M</i> ₋ , <i>ψ</i> =+1	1,0	1,000	1,000	1,000				
		0,7L	1,016	1,100		1,025	1,000		
		0,7R	1,016	1,100	1,025		1,000		
		0,5	1,000	1,127	1,019				
	$M_{\rm cr} \psi = +3/4$	1,0	1,139	1,141	1,000				
$\kappa_y = 1, \ \kappa_w = 1$		0,7L	1,210	1,313	1,050)00	
Beam M-side:		0,7R	1,109	1,201	1,000				
$\bigwedge w > 0$		0,5	1,139	1,285	1,017				
C T ME.	M	1,0	1,312	1,320	1,150				
C T w < 0	$\prod_{r} \varphi = + \frac{1}{2}$	0,7L	1,480	1,616		1,160			
		0,7R	1,213	1,317		1,00	0		
		0,5	1,310	1,482	1,150	1,000			
	$M_{\rm eff} = -1$	1,0	2,555	2,733	2,00	- <i>ψ</i>	(_f	-2,00	
		0,7L	1,921	2,103	1,55	0,380	-0,580	-1,55	
		0,7R	1,921	2,103	1,55	0,580	-0,380	-1,55	
		0,5	2,223	2,390	1,88	$0,125 - 0,7\psi_{\rm f}$	$-0,125-0,7\psi_{\rm f}$	-1,88	

ENV 1993-1-1, ENV 1999-1-1

Tabulka F.1.2 Hodnoty součinitelů C ₁ , C ₂ a C ₃ v závislosti na velikosti součinitele k. Případy příčného zatížení										
Zatížení a podmínky	Průběh	Hodnoty	Hodnoty součinitelů							
podepření	depření momentu		C ₁	C ²	C ₃					
t		1,0 0,5_	1,132 0,972	0,459 -0,304	0,525 0,980					
W N		1,0 0,5	1,285 0,712	1,562 0,652	0,753 1,070					
f F		1,0 0,5	1,365 1,070	0,553 0,432	1,730 3,050					
F E		1,0 0,5	1,565 0,938	1,267 0,715	2,640 4,800					
		1,0 0,5	1,046 1,010	0,430 0,410	1,120 1,890					

Table I.2 - Values of factors C_1 , C_2 and C_3 corresponding to various transverse loading cases, values of buckling length factors k_y , k_z , k_w , cross-section monosymmetry factor ψ_f and torsion parameter κ_{wt} .

	Buck	cling le factors	ength s	Values of factors								
Loading and support conditions				C_1	1) [C_2			C_3		
	ky /	k _z	k _w	<i>C</i> _{1,0}	<i>C</i> _{1,1}	\downarrow $\psi_{\rm f} = -1$		$\psi_{\mathbf{f}} = 1$	$\psi_{f} = -1$		$\psi_{\mathbf{f}} = 1$	
	1	1	1	1,127	1,132	0,33	0,459	0,50	0,93	0,525	0,38	
	1	1	0,5	1,128	1,231	0,33	0,391	0,50	0,93	0,806	0,38	
	1	0,5	1	0,947	0,997	0,25	0,407	0,40	0,84	0,478	0,44	
	1	0,5	0,5	0,947	0,970	0,25	0,310	0,40	0,84	0,674	0,44	
						$\psi_{\rm f} = -1$	$-0.5 \leq \psi_{\rm f} \leq 0.5$	$\psi_{f} = 1$	$\psi_{\mathfrak{f}} = -1$	$-0,5 \le \psi_{\rm f} \le 0,5$	$\psi_{\rm f} = 1$	
<i>q</i>	0,5	1	1	2,576	2,608	1,00	1,562	0,15	1,00	-0,859	-1,99	
$M_{\rm cr}$	0,5	0,5	1	1,490	1,515	0,56	0,900	0,08	0,61	-0,516	-1,20	
	0,5	0,5	0,5	1,494	1,746	0,56	0,825	0,08	0,61	0,002712	-1,20	

Cantilever

 $M_{cr} = \mu_{cr} \frac{\pi \sqrt{EI_z GI_t}}{L}$

Table I.3 - Relative non-dimensional critical moment μ_{cr} for cantilever $(k_y = k_z = k_w = 2)$ loaded by concentrated end load *F*.

Loading and support	$\frac{\pi}{L}\sqrt{\frac{EI_{\rm W}}{GI_{\rm t}}} = k_{\rm W}\kappa_{\rm wf} =$	$\frac{\pi z_{\rm g}}{L} \sqrt{\frac{EI_{\rm z}}{GI_{\rm t}}}$	↓ (T) (C)	$\frac{\downarrow}{L}_{(C)}^{(T)} = \frac{\pi z_j}{\Lambda} \sqrt{\frac{EI_z}{GI_t}} = k_z \zeta_j = \zeta_{j0} \qquad \qquad$							
conditions	$= \kappa_{wt0}$	$=k_z\zeta_g=\zeta_g$	-4	-2	-1	0	1	2	4		
		4	0,107	0,156	0,194	0,245	0,316	0,416	0,759		
		2	0,123	0,211	0,302	0,463	0,759	1,312	4,024		
	0	0	0,128	0,254	0,478	1,280	3,178	5,590	10,730		
		-2	0,129	0,258	0,508	1,619	3,894	6,500	11,860		
		-4	0,129	0,258	0,511	1,686	4,055	6,740	12,240		
	0,5	4	0,151	0,202	0,240	0,293	0,367	0,475	0,899		
			2	0,195	0,297	0,393	0,560	0,876	1,528	5,360	
		0	0,261	0,495	0,844	1,815	3,766	6,170	11,295		
		-2	0,329	0,674	1,174	2,423	4,642	7,235	12,595		
		-4	0,364	0,723	1,235	2,529	4,843	7,540	13,100		
, ^F L		4	0,198	0,257	0,301	0,360	0,445	0,573	1,123		
		2	0,268	0,391	0,502	0,691	1,052	1,838	6,345		
	1	0	0,401	0,750	1,243	2,431	4,456	6,840	11,920		
		-2	0,629	1,326	2,115	3,529	5,635	8,115	13,365		
M _{cr}		-4	0,777	1,474	2,264	3,719	5,915	8,505	13,960		

a) For $z_j = 0$, $z_g = 0$ and $\kappa_{wt0} \le 8$: $\mu_{cr} = 1,27 + 1,14 \kappa_{wt0} + 0,017 \kappa_{wt0}^2$.

b) For $z_j = 0$, $-4 \le \zeta_g \le 4$ and $\kappa_{wt} \le 4$, μ_{cr} may be calculated also from formulae (I.7) and (I.8), where the following approximate values of the factors C_1 , C_2 should be used for the cantilever under tip load *F*:

$$\begin{split} C_1 &= 2,56 + 4,675 \,\kappa_{\rm wt} - 2,62 \,\kappa_{\rm wt}^2 + 0,5 \kappa_{\rm wt}^3, & \text{if } \kappa_{\rm wt} \leq 2 \\ C_1 &= 5,55 & \text{if } \kappa_{\rm wt} > 2 \\ C_2 &= 1,255 + 1,566 \,\kappa_{\rm wt} - 0,931 \,\kappa_{\rm wt}^2 + 0,245 \,\kappa_{\rm wt}^3 - 0,024 \kappa_{\rm wt}^4, & \text{if } \zeta_g \geq 0 \\ C_2 &= 0,192 + 0,585 \,\kappa_{\rm wt} - 0,054 \,\kappa_{\rm wt}^2 - (0,032 + 0,102 \,\kappa_{\rm wt} - 0,013 \,\kappa_{\rm wt}^2) \,\zeta_g, & \text{if } \zeta_g < 0 \end{split}$$

EN 1999-1-1 EN 1995-1-1 steel + alumunium timber

$$M_{cr} = \mu_{cr} \frac{\pi \sqrt{EI_z GI_t}}{L}$$

 $L_{ef} = L / \mu_{cr}$

Procedure of (Baláž & Koleková 2000a, b, 2002a, b)

$$M_{cr} = \frac{C_1}{k_z} \left[\sqrt{1 + \kappa_{wt}^2 + (C_2 \zeta_g)^2} - C_2 \zeta_g \right] \frac{\pi \sqrt{EI_z GI_t}}{L}$$

Procedure used in German standard DIN 1052: 2004 Annex E.3 German National Annex to DIN EN 1995-1-1: 2005

$$M_{cr} = a_1 \left[1 - a_2 \frac{a_z}{L} \sqrt{\frac{EI_z}{GI_t}} \right] \frac{\pi \sqrt{EI_z GI_t}}{L} = \frac{C_1}{k_z} \left[1 - C_2 \zeta_g \right] \frac{\pi \sqrt{EI_z GI_t}}{L}$$

 $a_1 = C_1 / k_z; a_2 = \pi C_2 / k_z; a_z = z_g$

$$X = C_2 \zeta_g$$

$$X = C_2 \frac{\pi z_g}{k_z L} \sqrt{\frac{EI_z}{GI_t}}$$

1.4 Solution of system of differential equations using Bessel functions

System of differential equations for beam in bending with rectangular cross-section was solved using Bessel functions in (Baláž, Koleková, 2015) and in (Voľmir, 1965). Solution leads for $M_y(x) = -Fx$ to the equation

$$\zeta_g \sqrt{\frac{\mu_{cr}}{\pi}} \Gamma(0.25) \sum_{k=0}^n \frac{(-1)^k}{k! \Gamma(k+1.25)} \left(\frac{\pi \mu_{cr}}{4}\right)^{2k+0.25} - \Gamma(0.75) \sum_{k=0}^n \frac{(-1)^k}{k! \Gamma(k+0.75)} \left(\frac{\pi \mu_{cr}}{4}\right)^{2k-0.25} = 0 \quad (21)$$

Figure 2. Graphical interpretation of equation (21). The least root is the solution: $\mu_{cr} = 2.04574$.

Table 6.1 – Effective length as a ratio of the span

Beam type	Loading type	$\ell_{\rm ef}/\ell^{\rm a}$					
Simply supported	Constant moment Uniformly distributed load Concentrated force at the middle of the span	1,0 0,9 0,8					
Cantilever	Uniformly distributed load Concentrated force at the free end	0,5 0,8					
^a The ratio between the effective length ℓ_{ef} and the span ℓ is valid for a							

beam with torsionally restrained supports and loaded at the centre of gravity. If the load is applied at the compression edge of the beam, ℓ_{ef} should be increased by 2h and may be decreased by 0,5h for a load at the tension edge of the beam.

$$M_{cr} = \frac{\pi \sqrt{EI_z GI_t}}{L_{ef}}$$

Procedure given in Eurocode EN 1995-1-1: 2004

$$M_{cr} = \frac{1}{0.8 + \frac{2h}{L}} \frac{\pi \sqrt{EI_z GI_t}}{L} \quad \text{if} \quad z_g = \frac{h}{2}; \quad M_{cr} = \frac{1}{0.8 - \frac{h}{2L}} \frac{\pi \sqrt{EI_z GI_t}}{L} \quad \text{if} \quad z_g = -\frac{h}{2}$$

1.3 Procedure given in Eurocode EN 1995-1-1: 2004

According to EN 1995-1-1: 2004 effective length $L_{ef} = l_{ef}$, where for cantilever with concentrated load F at the free end $l_{ef}/L = 0.8$. If the load F is applied at the compression edge of the beam, l_{ef} should be increased by 2h and may be decreased by 0.5h for a load at the tension edge of the beam, where h is height of the rectangular cross-section. This wording is not correct in the case of cantilever (see (31)). The wording should be replaced by 2h (decreased by 0.5h).

Table 8 Effective length l_{ef} (Colling, 2014)

F at the free end of the cantilver

			Ratio L_{ef}/L according to different codes. Quantity ",az" denotes distance of point of load application from shear center S.								
Boundary conditions of the beam			Kirby, Nethercot, 1979, Slovak NAD to	Czech NAD to $(L_{ef}/L = m)$	D ČSN P ENV 199	95-1-1: 1996;	Eurocode EN 1995-1-1: 2003;	German code DIN 1052: 2004; $(L_{ef}/L = k_{1ef})$	Baláž, Koleková, 2002b; Eurocode		
	Type of loading		STN P ENV 1995-1-1: 2002 $(L_{ef}/L = m)$ $a_z = 0 m;$	$a_z = + h/2,$ if point of load application is above S	$a_z = 0$ m, if if point of load application is in S	$a_z = -h/2$, if if point of load application is below S	$(L_{ef}/L = k_{l.ef});$ if $a_z = +h/2$: $L_{ef} = L_{ef} + 2h;$ $a_z = -h/2$: $L_{ef} = L_{ef} - h/2$	$\begin{bmatrix} a_1(1-a_2\frac{a_z}{L}\sqrt{\frac{EI_z}{GI_1}}) \end{bmatrix}^{-1}$ for $a_z = 0$ m after with values from Table 9:	EN 1999-1-1: 2007; $(L_{ef}/L = 1/\mu_{cr}), a_z=0;$ remark: $a_{z^{**}}$ is in the above references denoted as z_{g}		
	end moment M and $\psi.M$,	ts $\psi = 1$	1		1		1	1	1		
beam	end moments M and $\psi.M$, $\psi = 0$		0.57		_			-	1 / 1.77 = 0.565		
simply supported on both	end moments M and $\psi.M$, $\psi = -1$		0.43				-	-	1 / 2.555 = 0.391		
	point load i	F at midspan	0.74	0.8	0.75	0.7	0.8	1 / 1.35 = 0.741	1 / 1.348 = 0.742		
ends $k_n = 1.0$	point load F at quarter-span		0.69	0.74	0.69	0.64	-	-	-		
$k_z = 1.0$ $k_z = 1.0$	point load F at , $x^{\prime\prime}$ -section, $\xi = x/L$ $\alpha = 1.35 - 1.4\xi(1-\xi)$		-	0.8/a	0.75/α	0.7/α	-	-	-		
	two point loads F and F at quarters-span		0.95	1.00	. 1999			. 1779	1 / 1.038 = 0.963		
	uniformly o	list. load q	0.88	0.95	0.9	0.85	0.9	1 / 1.13 = 0.885	1 / 1.127 = 0.887		
beam fired an	$k_{y} = 0.5$	point load in mid. F	0.39	2-5			-	1 / 6.81 = 0.147	1 / 6.072 = 0.165		
both ends	$k_z = 0.5$ $k_w = 1.0$	uniformly dist. load q	0.59		-	-	-	1 / 5.12 = 0.192	1 / 5.152 = 0.194		
interior span of continuous beam	$k_{j} = 0.5$	point load in mid. F	Ξ.	-	-	-	-	1 / 1.7 = 0.588	1 / 1.683 = 0594		
	$k_z = 1.0$ $k_w = 1.0$	uniformly dist. load q		275	. C un		-	1 / 1.3 = 0.769	1 / 2.576 = 0.388		
cantilever	end momen	nt M	8 - 1	. <u></u>	2		<u></u>	-	-		
$k_y = k_z =$	point load i	F at free-end			1.7		0.8	1 / 1.27 = 0.787	1 / 1.28 = 0.781		
$=k_w=2$	uniformly distributed load q			-	1.2	<u>1105</u>	0.5	1 / 2.05 = 0.488	1 / 2.054 = 0.487		

Table 10 Comparisons of L_{ef}/L values for elastic critical moment M_{cr} , see formula (5), defined by various publications. Evaluation of rules for $a_x = 0$ m.

The values in bold and boxes are incorrect. The value 0.769 is valid for section at midspan and not at the support. The correct value at the support is 0.769 / 2 = 0.385.

CONCLUSION

Harmonization and unification of rules of metal (steel, aluminium) and timber Eurocodes, if it is reasonable, will be good for everybody especially for designers in practice. Shortening of Eurocodes is desirable.

Thank for agreeing with us