CRITICAL AXIAL FORCE OF TORSIONAL-FLEXURAL BUCKLING FOR VARIOUS BOUNDARY CONDITIONS BY GOLDENVEJZER'S APPROXIMATE METHOD

Prof. Ivan BALÁŽ Assoc. Prof. Yvona KOLEKOVÁ Ing. Michal KOVÁČ Ing. Tomáš ŽIVNER

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

SLOVAK REPUBLIC, EUROPEAN UNION

EUROPEAN UNION SLOVAK REPUBLIC POPULATION 510 000 000 5 100 000 CAPITAL BRATISLAVA BRUSSELS

CRITICAL FORCE N_{cr,TF} OF TORSIONAL-FLEXURAL BUCKLING FOR ANY COMBINATIONS OF BENDING AND TORSION BOUNDARY CONDITIONS

Eurocode 3 - Design of steel structures - Part 1-3: General rules - Supplementary rules for cold-formed members and sheeting

Ncr,TFz

$$\frac{1}{2(1-1)z_{s}^{2}/i_{s}^{2}}\left[(N_{cr,z} + N_{cr,T}) \mp \sqrt{(N_{cr,z} + N_{cr,T})^{2} - 4N_{cr,z}N_{cr,T}(1-1)z_{s}^{2}/i_{s}^{2}} \right]$$

$$N_{cr,z} = \frac{\pi^{2}EI_{z}}{k_{z}^{2}L^{2}} \qquad N_{cr,T} = \frac{1}{i_{s}^{2}}\left[GI_{t} + \frac{\pi^{2}EI_{w}}{k_{w}^{2}L^{2}} \right] \qquad i_{s}^{2} = \frac{I_{y} + I_{z}}{A} + y_{s}^{2} + z_{s}^{2}$$

NOTE: valid only when bending and torsion boundary conditions are the same.

Monosymmetric section N_{cr.TFz} Ζ EN 1993-1-3 $\frac{1}{2(1-1)z_{s}^{2}/i_{s}^{2}}\left[\left(N_{\mathrm{cr},z}+N_{\mathrm{cr},T}\right)\mp\sqrt{\left(N_{\mathrm{cr},z}+N_{\mathrm{cr},T}\right)^{2}-4N_{\mathrm{cr},z}N_{\mathrm{cr},T}\left(1-1/2)z_{s}^{2}/i_{s}^{2}\right)}\right]$ EN 1999-1-1

Eurocode 9: Design of aluminium structures - Part 1-1: General structural rules

$$\frac{1}{2(1-\alpha_{zw}t_{s}^{2}/i_{s}^{2})} \left[(N_{cr,z} + N_{cr,T}) \mp \sqrt{(N_{cr,z} + N_{cr,T})^{2} - 4N_{cr,z}N_{cr,T}(1-\alpha_{zw}t_{s}^{2}/i_{s}^{2})} \right]$$

1940, 1958

Vlasov V.Z., Thin-walled elastic beams, Moscow

1941

Gol'denvejzer A. L., "Stability of thin-walled members under axial force depending on boundary conditions", Moscow. (In Russian).

1954

Březina V., Boundary conditions in stability of members in compression. Prague.

1962

Březina V., Buckling resistance of metal members and beams, Prague. (In Czech).

1982

Chalupa A. et al., *Design of steel structures, Commentary to ČSN 73 1401*, **Prague**. (In Czech).

1941 Gol'denvejzer A. L. Eigenfunctions of vibration modes (EFVMs)

where:
$$\lambda = L \sqrt[4]{\frac{\mu \omega_0^2}{EI}}; \quad \xi = \frac{x}{L}; \quad 0 \le \xi \le 1$$

Table 1: Factors α_{zw} resulted from vibration eigenfunctions

Flexural BCs, Buckling	Torsional BCs, Buckling length factors k_w								
$length factors: k_y, k_z$	Υ 1.0	} ↓ 0.7	↓ 0.7	≹ € 0.5					
▲ 1.0	1	0.817	0.817	0.780					
▲ 0.7	0.817	1		0.765					
 0.7	0.817		1	0.765					
1 0.5	0.780	0.765	0.765	1					

1954

Březina V.

Eigenfunctions of buckling modes (EFBMs)

where:
$$\varepsilon = \sqrt{\frac{N}{EI}}L; \quad \xi = \frac{x}{L}; \quad 0 \le \xi \le 1$$

Table 1: Factors α_{zw} resulted from vibration eigenfunctions

Flexural BCs, Buckling	Torsio	Torsional BCs, Buckling length factors k_w								
length	ᡩ᠆᠆᠊ᡃᡟ	¥−−−¥	┟┼───┊	1 1						
factors: k_y , k_z	1.0	0.7	0.7	0.5						
▲ 1.0	1			0.721						
₫ _ 0.7										
<u>▲</u> 0.7										
₩ 0.5	0.721			1						

1962 Březina V.

Eigenfunctions of vibration modes (EFVMs)

$$w^{IV}(\xi) - \lambda^4 w(\xi) = 0$$

where:
$$\lambda = L \sqrt[4]{\frac{\mu \omega_0^2}{EI}}; \quad \xi = \frac{x}{L}; \quad 0 \le \xi \le 1$$

He calculated α_{zw} values for all 100 combinations of bending and torsion boundary conditions. Many of them are incorrect.

	y ictors	TBBCs = Torsional Buckling Boundary Conditions Buckling length factors k_w											
0410	ndar sth fa												
- Ela	g Bou bis. g leng		Non-swa	y TBBCs		Sway TBBCs							
DC°-	ckling ckling ckling k_z	I	II ¥——↓J		IV J	V	VI	VII		IX 3	X		
LD LD	Bu Bu Co	а к 0.5	0 .7	т к 0.7	1.0	я ц 1.0	1.0	2.0	2.0	2.0	2.0		
2 C		1	0.765	0.765	0.78	0.008	0.008	0.127	0.127	-0.421	-0.421		
v FBB	2 2 0.7	0.765	1	0.472	0.817	0.425	0.008	0.794	0.117	1.776	-0.683		
ews-u	3 <u>A</u> 0.7	0.765	0.472	1	0.817	0.008	0.425	0.117	0.794	-0.683	1.776		
Z	4 ▲ 1.0	0.78	0.81 7	0.817	1	0.106	0.106	0.721	0.721	1.805	1.805		
	5 1.0	0.008	0.425	0.008	0.106	1	0.97	0.78	-0.378	1.348	-4.583		
	6 ≸ <u>−</u> € _{1.0}	0.008	0.008	0.425	0.106	0.97	1	-0.378	0.78	-4.583	1.348		
RBCs	7 <u>A</u>	0.127	0.794	0.117	0.721	0.78	-0.378	1	0.405	1.707	1.707		
Wav F	⁸ ₩ <u> </u>	0.127	0.117	0.794	0.721	-0.378	0.78	0.405	1	1.707	1.707		
	9 <u>3</u> 2.0	-0.421	1.776	-0.683	1.805	1.348	-4.583	1.707	1.707	1	16.783		
		-0.421	-0.683	1.776	1.805	-4.583	1.348	1.707	1.707	16.783	1		

Tab. 3 Factors α_{yw} (TBBC, FBBCy) or α_{zw} (TBBC, FBBCz) calculated using fundamental functions EFVMs

lira	ndary h factors	TBBCs = Torsional Buckling Boundary Conditions. Buckling length factors k_w											
= Flex	g Bour ons. g lengt		Non-swa	y TBBCs		Sway TBBCs							
FBBCs	Bucklin Conditic Bucklin k_y , k_z	I 1 0.5	Ⅱ }Ų 0.7	Ⅲ ↓—{↓	IV ↓ ↓ ↓ 1.0	V 1.0				IX 3 2.0	X 2.0		
Cs	1 0.5	1	0.66	0.66	0.721	0	0	0.115	0.115	-0.422	-0.422		
v FBB	2 ▲ 0.7	0.66	1	0.308	0.758	0.367	0.042	0.808	0.104	1.494	-0.601		
n-swa	3 <u> </u>	0.66	0.308	1	0.758	0.042	0.367	0.104	0.808	-0.601	1.494		
No	4 ▲ 1.0	0.721	0.758	0.758	1	0	0	0.721	0.721	1.318	1.318		
	5 ₩1.0	0	0.367	0.042	0	1	1	0.721	-0.36	1.318	-2.637		
	6 ₿───€ _{1.0}	0	0.042	0.367	0	1	1	-0.36	0.721	-2.637	1.318		
BBCs	7 ⁰ 2.0	0.115	0.808	0.104	0.721	0.721	-0.36	1	0.405	1.483	1		
Sway F	⁸ ▲2.0	0.115	0.104	0.808	0.721	-0.36	0.721	0.405	1	1	1.483		
	9 <u>2.0</u>	-0.422	1.494	-0.601	1.318	1.318	-2.637	1.483	1	1	5.428		
	10	-0.422	-0.601	1.494	1.318	-2.637	1.318	1	1.483	5.428	1		

Tab. 4 Factors α_{yw} (TBBC, FBBCy) or α_{zw} (TBBC, FBBCz) calculated using fundamental functions EFBMs

EN 1999-1-1:2007+A1

Table I.6 - Values of $\alpha_{yw}\,$ or $\alpha_{zw}\,$ for combinations of bending and torsion boundary conditions

Bending boun-			,	Torsion bo	undary cor	ndition, k_w	,						
dary condition k_y or k_z	ү ү 1,0	} —↓ 0,7	₩ 0,7	}€	2,0	2,0	∦ □ 1,0	□ <u> </u> [1,0	□				
▲ 1,0	1	0,817	0,817	0,780	a)	a)	a)	a)	a)				
∛ 0,7	0,817	1	a)	0,766	a)	a)	a)	a)	a)				
₫ 0,7	0,817	a)	1	0,766	a)	a)	a)	a)	a)				
↓ 0,5	0,780	0,766	0,766	1	a)	a)	a)	a)	a)				
≹ —2,0	a)	a)	a)	a)	1	a)	a)	a)	a)				
<u> </u>	a)	a)	a)	a)	a)	1	a)	a)	a)				
} → \$ 1,0	a)	a)	a)	a)	a)	a)	1	a)	a)				
₩ — 1,0	a)	a)	a)	a)	a)	a)	a)	1	a)				
≹ 2,0	a)	a)	a)	a)	a)	a)	a)	a)	1				
a) conservative	a) conservatively, use $\alpha_{yw} = 1$ and $\alpha_{zw} = 1$												

Table is valid also for sections without axis of symmetry

$$(N_{\rm cr,y} - N_{\rm cr})(N_{\rm cr,z} - N_{\rm cr})(N_{\rm cr,T} - N_{\rm cr})i_{\rm s}^{2} - \alpha_{\rm zw}z_{\rm s}^{2}N_{\rm cr}^{2}(N_{\rm cr,y} - N_{\rm cr}) - \alpha_{\rm yw}y_{\rm s}^{2}N_{\rm cr}^{2}(N_{\rm cr,z} - N_{\rm cr}) = 0$$

Large parametrical study using FEM

lira	ndary h factors	TBBCs = Torsional Buckling Boundary Conditions. Buckling length factors k_w											
= Flex	g Bour ons. g lengt		Non-swa	y TBBCs		Sway TBBCs							
FBBCs	Bucklin Conditic Bucklin k_y , k_z	I 1 0.5	Ⅱ }Ų 0.7	Ⅲ ↓—€ 0.7	IV ↓ ↓ ↓ 1.0	V 1.0				IX 3 2.0	X 2.0		
Cs	1 0.5	1	0.66	0.66	0.721	0	0	0.115	0.115	-0.422	-0.422		
v FBB	2 ▲ 0.7	0.66	1	0.308	0.758	0.367	0.042	0.808	0.104	1.494	-0.601		
n-swa	3 <u> </u>	0.66	0.308	1	0.758	0.042	0.367	0.104	0.808	-0.601	1.494		
No	4 ▲ 1.0	0.721	0.758	0.758	1	0	0	0.721	0.721	1.318	1.318		
	5 ₩1.0	0	0.367	0.042	0	1	1	0.721	-0.36	1.318	-2.637		
	6 ₿───€ _{1.0}	0	0.042	0.367	0	1	1	-0.36	0.721	-2.637	1.318		
BBCs	7 ⁰ 2.0	0.115	0.808	0.104	0.721	0.721	-0.36	1	0.405	1.483	1		
Sway F	⁸ ▲2.0	0.115	0.104	0.808	0.721	-0.36	0.721	0.405	1	1	1.483		
	9 <u>2.0</u>	-0.422	1.494	-0.601	1.318	1.318	-2.637	1.483	1	1	5.428		
	10	-0.422	-0.601	1.494	1.318	-2.637	1.318	1	1.483	5.428	1		

Tab. 4 Factors α_{yw} (TBBC, FBBCy) or α_{zw} (TBBC, FBBCz) calculated using fundamental functions EFBMs

Table 3: Intervals of errors in (2) for regular α_{zw} (from table 2) for CS1 with $z_s/i_s=0.880$

	ų.	ΨŲ	7		ų		1		7777		—		1	-0	0		0	ų	ų.	0
	0	0	-3	-1	-3	-1	-2	-1	2	20	2	20	-60	0	-60	0	-3	10	-3	10
	-5	0	0	0	-18	-1	-5	-1	1	18	-1	-87	-14	7	-45	0	-42	0	-1	12
	-5	0	-18	-1	0	0	-5	-1	-1	-87	1	18	-45	0	-14	7	-1	12	-42	0
	-6	0	-8	0	-8	0	0	0	0	-89	0	-89	-82	0	-82	0	-40	0	-40	0
	20	31	31	36	-8	2	-16	-6	0	0	21	46	8	12	23	20	0	0	6	20
	20	31	-8	2	31	36	-16	-6	21	46	0	0	23	20	8	12	6	20	0	0
	-26	-1	2	16	-9	-3	-20	-4	1	9	-7	3	0	0	0	0	-2	-89	-6	0
****	-26	-1	-9	-3	2	16	-20	-4	-7	3	1	9	0	0	0	0	-6	0	-2	-89
<u>≱</u>	11	20	-4	-2	20	23	-1	-1	0	0	6	20	-59	-85	-2	-1	0	0	-9	0
4	11	20	20	23	-4	-2	-1	-1	6	20	0	0	-2	-1	-59	-85	-9	0	0	0

When $\alpha_{zw} = 1.0$

Table 4: Intervals of errors in (3) for CS1 with $z_s/i_s=0.880$

	ų.	ΨŲ	7777	ų	ų		7777		*		_		1	0	0-		6	ų	Ψ	0
<u> </u>	0	0	1	4	1	4	3	6	1	15	1	15	3	28	3	28	1	15	1	15
<u></u>	0	3	0	0	2	10	2	5	0	13	1	15	2	19	2	19	0	13	1	15
	0	3	2	10	0	0	2	5	1	15	0	13	2	19	2	19	1	15	0	13
	0	3	0	3	0	3	0	0	0	11	0	11	0	16	0	16	0	11	0	11
	16	26	25	30	23	27	25	28	0	0	3	13	3	6	3	6	0	0	3	13
	16	26	23	27	25	30	25	28	3	13	0	0	3	6	3	6	3	13	0	0
	5	35	10	32	10	32	17	37	0	3	0	3	0	0	0	0	0	3	0	3
****	5	35	10	32	10	32	17	37	0	3	0	3	0	0	0	0	0	3	0	3
₩	16	26	25	30	23	27	25	28	0	0	3	13	3	6	3	6	0	0	3	13
4	16	26	23	27	25	30	25	28	3	13	0	0	3	6	3	6	3	13	0	0

Fig. 4 Left vertical axis: elastic critical forces $N_{cr.z}$, $N_{cr.TFa}$, $N_{cr.TFa}$, $N_{cr.TF1}$, and reference value $N_{cr.FEMID}$ as functions of length L of member (Fig.2). Right vertical axis: Errors er_{TFa} , er_{TF1} in critical forces $N_{cr.TFa}$, $N_{cr.TF1}$ comparing with "exact" $N_{cr.FEMID}$ value

Tab. 3 Factors α_{yw} (TBBC, FBBCy) or α_{zw} (TBBC, FBBCz) calculated using fundamental functions EFVMs

New generation of EN 1999-1-1 will contains the following table with improved α_{zw} values smaller than 1.0 giving errors in N_{cr,TFz} in interval -3% - +5%.

	ndary – 10. gth (d k _z)			TBC	s = Torsio (Bucl	nal Boun kling leng	dary Con th factors	ditions I k _w)	- X.			
	l Bou ons 1- ng len <i>k</i> y an		Non-sw	ay TBCs		Sway TBCs						
BCs =	lexura onditi sucklin actors	I	II ≹——↓	III Y	IV ↓ ↓	V J0		VII Ļ—	VIII □───↓	IX	X	
Ē.	EO Eª	(0,5)	(0,7)	(0,7)	(1,0)	(1,0)	(1,0)	(2,0)	(2,0)	(2,0)	(2,0)	
S		1	0,9	0,9	0,9	0,7	0,7	0,8	0,8	0,8	0,8	
ny FB(0,9	1	0,8	0,9	0,6	0,6	0,7	0,8	0,8	0,7	
0 n-SW8	3 (0,7)	0,9	0,8	1	0,9	0,6	0,6	0,8	0,7	0,7	0,8	
Non-	4 (1,0)	0,9	0,9	0,9	1	0,4	0,4	0,7	0,7	0,7	0,7	
	5 (1,0) ↓[] []	0,1	0,1	0,1	0,1	1	1	0,9	0,9	0,9	0,9	
	6 (1,0) ≹───{{	0,1	0,1	0,1	0,1	1	1	0,9	0,9	0,9	0,9	
FBCs	7 (2,0) ▲ 【	0,2	0,2	0,2	0,2	0,9	0,9	1	0,6	0,6	1	
Sway	8 (2,0) ₿ <u></u>	0,2	0,2	0,2	0,2	0,9	0,9	0,6	1	1	0,6	
	<u>9</u> (2,0) <u>↓</u>	0,2	0,2	0,2	0,2	0,9	0,9	0,6	1	1	0,6	
		0,2	0,2	0,2	0,2	0,9	0,9	1	0,6	0,6	1	

Table I.6 - Values of $\alpha_{\rm yw}\,$ or $\alpha_{\rm zw}\,$ for combinations of bending and torsion boundary conditions

NOTE Conservatively $\alpha_{yw} = 1$ or $\alpha_{zw} = 1$ may be used for any combinations of bending 1 - 10 and torsion I - X boundary conditions.

THE END