

ELECTRONICS AND INFORMATION SYSTEMS DEPARTMENT LIQUID CRYSTALS AND PHOTONICS RESEARCH GROUP

LIQUID CRYSTALS AND LIGHT EMITTING

MATERIALS FOR PHOTONIC APPLICATIONS

Kristiaan Neyts

April 2018

Lecture series at WAT in Warsaw

OVERVIEW

Display applications (6h)

The human eye

Display characteristics

Liquid crystal display characteristics Direct drive and active matrix Direct view displays LCD backlight Projection displays

Liquid Crystals

Spatial light modulator OLEDs

VERTICALLY ALIGNED NEMATIC (VAN)

Initially vertically aligned, and $\Delta \varepsilon < 0$ with particular alignment material

IN PLANE SWITCHING (IPS) MODE

Liquid Crystals and Photonics

Revenue by display type: trends

Recent developments:

- LCD
- OLED
- Touchscreens
- 3D displays

Liquid Crystals

and Photonics

Display by number of units: trends

for TFT-LCD

Classification according to content and size

- LIC (low-information-content): watches, clocks
- HIC (high-information-content): matrix display, moving images
 - Small (mobile phone, tablet, PC monitor)
 - Large (TV)
 - Huge (cinema, outdoor, professional)

Classification according to type of screen

- Direct view
- Projection
- Virtual screen (e.g. HUD, VR goggles)

- eye lens
- photosensitive receptors in fovea fovea with cones (where you look at) wide area: rods
- axons: transfer the information
- blind spot

1 million nerve fibres

GHENT UNIVERSITY

Liquid Crystals

and Photonics

Kristiaan Neyts

Close left eye and focus on the cross. At a certain distance you will not see the black dot

Color perception: 3 cone fundamentals (absorption by molecules)

L (60%), M (30%) and S (10%) cones

 $\widehat{\blacksquare}$ **GHENT** UNIVERSITY

Kristiaan Neyts

 λ (nm)

Cone & rod density

- Cones are most abundant in an area of ±2 degrees (the fovea)
- The resolving power of the rods is much smaller, but they are more sensitive.

eye sensitivity curve

The spectral density $X_{e,\lambda}(\lambda)$ is weighted by the sensitivity $V(\lambda)$ of human vision

brightness:

$$X_{\nu} = K_m \int V(\lambda) X_{e,\lambda}(\lambda) d\lambda$$

 $K_m = 683 \text{ Im/W}$

14

cone responses yields 3 numbers

$$L = \int St(\lambda)l(\lambda)d\lambda$$
$$M = \int St(\lambda)m(\lambda)d\lambda$$

$S = \int St(\lambda)s(\lambda)d\lambda$

sensitivity of the three cones

equal energy white: L=M=S

Color matching

3 Primaries: 700 nm (red), 546.1 nm (green) and 435.8 nm (blue) any monochromatic color can be made by combining 3 primaries

GHENT UNIVERSITY

CIE 1931 2° standard observer

given a spectrum St(λ), the RGB coordinates can be calculated

$$\begin{cases} R = \int St(\lambda)\bar{r}(\lambda)d\lambda \\ G = \int St(\lambda)\bar{g}(\lambda)d\lambda \\ B = \int St(\lambda)\bar{b}(\lambda)d\lambda \end{cases}$$

GHENT UNIVERSITY

CIE 1931 2° XYZ color system (only positive coordinates)

$$\begin{cases} X = 683 \, \mathrm{lm/W} \int St(\lambda)\bar{x}(\lambda)d\lambda \\ Y = 683 \, \mathrm{lm/W} \int St(\lambda)\bar{y}(\lambda)d\lambda \\ Z = 683 \, \mathrm{lm/W} \int St(\lambda)\bar{z}(\lambda)d\lambda \end{cases}$$

GHENT UNIVERSITY

Liquid Crystals

and Photonics

GHENT UNIVERSITY

Where are the color models used?

CIE RGB: 3 original primaries

sRGB: most commonly used color model for monitors, printers, internet (standard by HP, Microsoft), white D65

Rec. 709: color gamut for HDTV

Rec. 2020: proposed color gamut

0.8 0.7 0.6 500 0.5

0.4

0.1

0.3

0.2

0.4 0.5

0.6

Kristiaan Neyts

21

Chromatic adaptation

Liquid Crystals

and Photonics

Interpretation

GHENT

Basic optical display characteristics:

Resolution

HDTV:

1920×1080 pixels

- 2 Mpixels per frame, 25 Hz frame rate, 52 MHz pixel rate,
- 8 bits/color, 1.24 Gbit/s uncompressed, 8-15 Mbit/s compressed
- Luminance

ΤV

500 Cd/m²

inhomogeneous encoding (more dark levels)

Contrast

C=(bright-dark)/dark ~1000 contrast in a bright environment is much less...

Liquid Crystals

Luminance and color based on red green and blue pixels

fill-factor (~60%) subpixel architecture AMLCD display - IPS (here Apple iPad 2)

Color gamut

- Area in the color triangle of possible colors
- determined by the RGB pixels

Kristiaan Neyts

Display Technology – Chapter 2

Frame rate

- 60 Hz or 120 Hz for television
- movies @24 fps, displayed at the double frequency (cinema:48Hz)
- Current LCD and OLED TV's display at 120Hz
- Response time: 20 ms is fine

gamma correction

- optimize the usage of bits γ≈0.44
- the inverse operation (decoding) with $\gamma \approx 0.22$

GHENT UNIVERSITY encoded

Kristiaan Neyts

Display Technology – Chapter 2

28

28

Viewing angle

- angle w.r.t. display normal at which the contrast ratio decreases to a fixed value (e.g. 10:1)
- 70° for AMLCD, IPS>VA LED

autostereogram: find the hidden animal...

only visible when this distance is smaller than 65 mm (distance between the eyes)