

ELECTRONICS AND INFORMATION SYSTEMS DEPARTMENT LIQUID CRYSTALS AND PHOTONICS RESEARCH GROUP

# LIQUID CRYSTALS AND LIGHT EMITTING

# MATERIALS FOR PHOTONIC APPLICATIONS

Kristiaan Neyts

April 2018

Lecture series at WAT in Warsaw









## **OVERVIEW**

### Photonic applications (6h)

- Liquid crystal beam steering
- Liquid crystal tunable lenses
- Liquid crystal smart windows
- Spatial light modulator
- Liquid crystal flat optics
- Wave guide modulation
- Liquid crystal lasing
- Liquid crystal filters



Liquid Crystals

and Photonics



# VCSEL WITH LIQUID CRYSTAL





Liguid Crystals

and Photonics



#### reflection microscopy images

A: no LC no polarizers





 $\widehat{\blacksquare}$ 

GHENT UNIVERSITY



B, C, D: with LC and crossed polarizers

C: LC along 45°



# VCSEL WITH LC



### VCSEL WITH LC







**GHENT** UNIVERSITY

### **VCSEL WITH LC**

Numerical simulation results  $d = 6\mu m, n_o = 1.5099, n_e = 1.7095$ 



Chiral nematic =cholesteric liquid crystal (right handed) with pitch P

self-organizing structure excellent, cheap mirror

structure yields photonic bandgap





- reflections are in phase
- slow light near the band edge



Ko and Sambles, JOSA A 1863 (1988)

**Kristiaan Neyts** 



#### compare



8

UNIVERSITY

### RH chiral nematic liquid crystal reflects RH circular polarization (RHCP) when wavelength is in band gap: P.n<sub>o</sub> < $\lambda$ <P.n<sub>e</sub>



Dependency on the BDH1305 dopant concentration in 5CB



### TEMPERATURE DEPENDENCY







Phase transition from chiral to isotropic at 33°C



J. Li, et al., J. Appl. Phys. 96, 19 (2004)



Photoluminescence of 1% DCM (dye) in E7 (6.8 $\mu$ m) with 5% chiral dopant BDH1305, to obtain RH CLC





### Simulation tool developed at UGent

Dipole antenna **p** 

Layered structure, uniaxial material with n<sub>e</sub> n<sub>o</sub>



GHENT UNIVERSITY

Liquid Crystals

and Photonics

Penninck et al., OPTICS EXPRESS 18558, 2011

### Light emitting dye in an anisotropic stack







In the band gap: no emission of RH light in-phase after round trip: enhanced emission out of phase after round trip: reduced emission

simulation model for 1D stack (for OLEDs/LCs) based on plane waves  $E_{0+} E_{0-} E_{e+} E_{e+}$  in every slab

Kristiaan Neyts

Penninck et al., OPTICS EXPRESS 18558, 2011

15

Simulation

Importance of dye molecule orientation

Liquid Crystals





Reference measurement: DCM dye in nematic LC absorption maximum: 500 nm, emission maximum: 600 nm



and



#### setup for measuring PL emission



and



#### see papers by

- Ilchishin
- Palffy-Muhorray
- Schmidtke
- Coles







chiral nematic liquid crystal lasing excitation pulse 0.5ns, 532nm, 30µJ

### How to reduce lasing threshold?



Split CLC 1D plane wave model

anisotropic gain  $g_e(\lambda)$  and  $g_o(\lambda)$ 



lasing condition tensor **A**<sup>-</sup> **A**<sup>+</sup> has eigenvalue 1 for one λ





Kristiaan Neyts

23

 $\widehat{\blacksquare}$ 

#### Laser threshold

laser pump power threshold versus pitch and order param.

#### measurement & simulation



# LASING IN NON-CHIRAL LC

Partial reflection at ITO electrode / full reflection at AI
higher reflectivity (AI) → lower threshold
voltage tuning

LC tilt  $\rightarrow$  shorter optical path length  $\rightarrow$  shorter wavelength  $\lambda_{\text{lasing}}$ 











# LASING IN NON-CHIRAL LC

Voltage tuning LC tilt  $\rightarrow$  reduction of cavity length  $\rightarrow$  shorter wavelength  $\lambda_{\text{lasing}}$ 



# **SMART WINDOWS**









Image: Peer+, Merck Window Technologies





3D camera













 $\widehat{\blacksquare}$ 







Dual frequency LC (Dabrowski), faster switching

### **DUAL FREQUENCY LIQUID CRYSTAL**



switching in the near infrared (not manydyes in IR)

HPDLC = Holographic Polymer Dispersed Liquid Crystal



### **WAVELENGTH FILTER**



### Based on chiral liquid crystals = 'reflective' liquid crystals





http://physicsworld.com Jul 23, 2009

Reflection of circular polarization











M. Mohammadimassoudi et al,, Opt. Express **22** 19098 (2014) 33

# LIQUID CRYSTALS AND PHOTONICS GROUP









### Ghent, Flanders, Belgium, Europe



Liquid Crystals

and Photonics

