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• Introduction (2h)

• Electrical and optical properties of materials (6h)

• Liquid crystal properties (10h)

• Display applications (6h)

• Photonic applications (6h)

OVERVIEW
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LIQUID CRYSTALS

Introduction: the fourth state of matter

melting clearing

temperature

high T o

isotropic

nematic

liquid crystal

low T o

crystalline
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OVERVIEW

materials

electrical

& optical

properties

applications:

displays

photonics
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Electrical and optical properties of materials (6h)

Polarizability of dielectric materials

Conductors and semiconductors

Light propagation

Light propagation in anisotropic media

Polarized light

Spontaneous and stimulated emission

OVERVIEW FOR NEXT LECTURES
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LIGHT MATTER INTERACTION

“Changing the properties of light”

in vacuum light behaves according 

to the laws of Maxwell: no manipulation possible 

(homogeneous equations, superposition)

materials are influenced by light 

light is influenced by materials

study of optical materials
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Maxwell’s Equations with charges and currents
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https://en.wikipedia.org/wiki/Maxwell’s_equations

MAXWELL’S EQUATIONS
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total charge density

- separate charges:

electrons, ions

- couples of opposite charges forming a dipole

-electron around an atom

-polar molecule

-displaced ion

a pρ ρ ρ= +

p qd=
�
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d
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q

ρ

pρ

dipole moment

MAXWELL’S EQUATIONS

P Pρ = −∇⋅
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current density

- current of single charges:

electrons, atoms, ions

- variation of dipoles:

rotation, stretching, displacement

- magnetization current:

magnetic moment m, spin & orbit

J
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MAXWELL’S EQUATIONS
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Maxwell’s Equations
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Rearranging the source terms in Maxwell’s equations
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MAXWELL’S EQUATIONS REVISITED

substitution of source terms ρa, Ja
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introduction of D and H fields:
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CONSTITUTIVE EQUATIONS

charges

currents
electric field

magnetic field

, , ,P J Mρ
� � �

,E B
� �

Laws of Maxwell

Constitutive equations

electrical properties, optical properties, absorption

,χ σ
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MICROSCOPIC THEORY OF LINEAR ISOTROPIC MATERIALS

Microscopic Theory for Dielectrics

origin of electric susceptibility?

Static Electronic Polarization

shape of the electron cloud in a material 

is influenced by the electric field

mass me (9.11 x 10-31 kg) 

charge e (1.602 x 10-19 C) 

0
P Eε χ=
� �

e-
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STATIC ELECTRONIC POLARIZATION

force on the electron due to electric field

force on the electron due to potential well Up

EF eE= −
� �

2
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F x ax

dx
= − = −
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STATIC ELECTRONIC POLARIZATION

static: equilibrium of forces: Ftot=0
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DYNAMIC ELECTRONIC POLARIZATION

differential equation of motion:    m.a=ΣF
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DYNAMIC ELECTRONIC POLARIZATION
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Materials with partially ionized atoms

- permanent dipole moment (at E=0)

- ions are displaced due to the local field

lC

lC

lC

lCC

C

=

= =
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H H
P

+

+ +
+

+
_

_
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_
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_

=>  induced dipole moment

E

IONIC POLARIZATION
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Solid state: ions move with respect to a grid 

equilibrium situation:
ions at distance d

out of equilibrium
M+ in phase

M- in phase
deviation u<<d

+q
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M-

u-

-q

u-

M+ M-

d

0localE =

0localE ≠

-q

+q
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-q
M+ M-

-q

restoring force between two ions:
leads to resonance
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x

IONIC POLARIZATION
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bend: 15µm

asym. stretch

ABSORPTION BY THE ATMOSPHERE

global 

warming
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Permanent dipoles in an electric field

potential energy
P

cosloc locU p E p E θ= − ⋅ = − ⋅ ⋅
�

�

Boltzmann-probability fB for the potential energy U

more dipoles align with E coslocp EU

kT kT
Bf e e

θ⋅ ⋅
−

= =

locE

ORIENTATION POLARIZATION
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MICROSCOPIC THEORY OF LINEAR ISOTROPIC MATERIALS

Microscopic Theory for Dielectrics

• electronic polarization

• ionic polarization

• orientation polarization
P
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different resonance/relaxation processes

sum of all polarizabilities per unit volume:

1011 1012 1013 1014 1015 1016 1017

VISIR UVRADIO

ω(Hz)
1µm1mm λ

α’=0

ΣΝα’

ΣΝα’’

Ναes

Ναis

Ναos

electronic polionic polrotation pol

GENERAL DIELECTRIC BEHAVIOR
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PROPAGATION OF PLANE MONOCHROMATIC WAVES
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LIGHT IS ELECTROMAGNETIC RADIATON

Electric field E

Magnetic field B

in vacuum

polarization

propagation speed c

frequency f

wavelength λ

from internet: Loo Kang Wee

2
k

π
λ

=
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LIGHT IN VACUUM

superposition of electric and magnetic fields in vacuum

“light waves, E fields and M fields do not interact”

no interaction between light beams!
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_

LIGHT SCATTERING BY A MOLECULE

incident plane wave (linearly polarized) 

scattered light of a particle with r << λ

forwardbackward

+

k
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Light and a single atom

sunlight incident on N2 or O2

makes electrons oscillate

dipole antenna light emission

“Rayleigh scattering” in the atmosphere 

linearly polarized

more blue than red ~ (1/λ)4

SUN

E
p

BLUE SKY



Kristiaan Neyts 30

http://district196.org/avhs/dept/science/acc_physics/pages/polarized.html

BLUE SKY
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LIGHT SCATTERING BY A PARTICLE

incident plane wave

scattered light of a particle with r order of  λ (Mie scattering)

forward
backward



Kristiaan Neyts 32

LIGHT SCATTERING BY A PARTICLE

Mie scattering of unpolarized light by spheres ( )2
2 2

2 1
~ n n−

www.citylab.com Karl, the SFO fog
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Light and a layer of atoms

p

p

p

interference: 

scattering + original

results in a phase delay

reflection

of a plane wave

LIGHT AND INDUCED DIPOLES
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Light and a volume of atoms

Phase delay of the forward scattered light

light has:

... lower speed: c/n

... same frequency f

... shorter wavelength λ/n 
1
3

1
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i i
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i i
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∑

∑

LIGHT AND INDUCED DIPOLES
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PROPAGATION OF PLANE MONOCHROMATIC WAVES
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in a medium
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