

LIQUID CRYSTALS AND LIGHT EMITTING MATERIALS FOR PHOTONIC APPLICATIONS

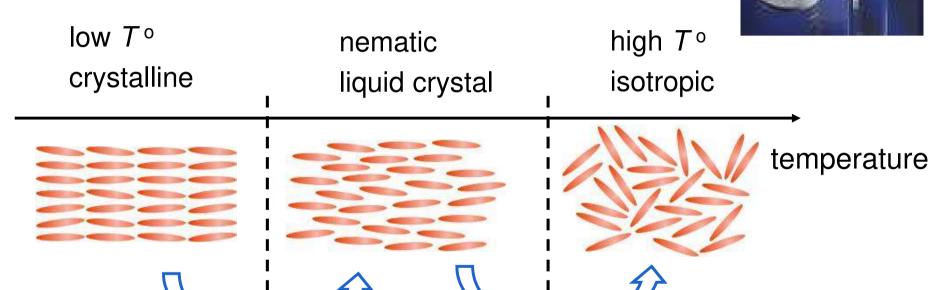
Kristiaan Neyts

April 2018

Lecture series at WAT in Warsaw

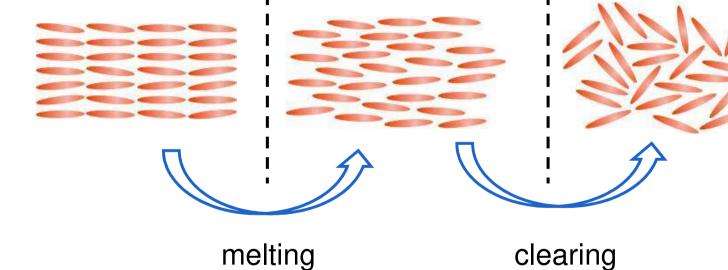
<u>OVERVIEW</u>

- Introduction (2h)
- Electrical and optical properties of materials (6h)
- Liquid crystal properties (10h)
- Display applications (6h)
- Photonic applications (6h)



LIQUID CRYSTALS

Introduction: the fourth state of matter



Kristiaan Neyts

3

OVERVIEW

electrical & optical properties applications:
displays
photonics

OVERVIEW FOR NEXT LECTURES

Electrical and optical properties of materials (6h)

Polarizability of dielectric materials

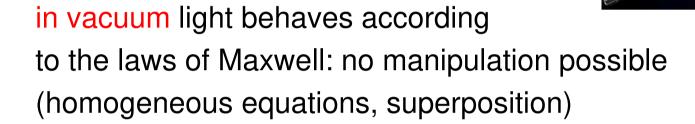
Conductors and semiconductors

Light propagation

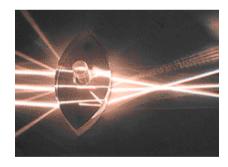
Light propagation in anisotropic media

Polarized light

Spontaneous and stimulated emission



LIGHT MATTER INTERACTION


"Changing the properties of light"

materials are influenced by light light is influenced by materials study of optical materials

Maxwell's Equations with charges and currents

$$\nabla \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho_a$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J}_a + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

source terms (a: all)

Charge density ρ_a

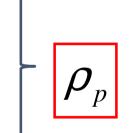
Current density \vec{J}_{a}

https://en.wikipedia.org/wiki/Maxwell's_equations

total charge density

- separate charges:

electrons, ions



- couples of opposite charges forming a dipole

-electron around an atom

-displaced ion

 $\rho_{\scriptscriptstyle P} = -\nabla \cdot \vec{P}$

dipole moment

$$\vec{p} = q\vec{d}$$

current density

$$\vec{J}_a = \vec{J} + \vec{J}_P + \vec{J}_M$$

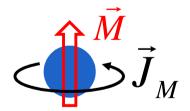
- current of single charges:

 \vec{J}

electrons, atoms, ions

- variation of dipoles:

$$ec{m{J}}_p$$


$$\vec{J}_P = \frac{\partial P}{\partial t}$$

rotation, stretching, displacement

$$ec{J}_{\scriptscriptstyle M}$$

magnetic moment m, spin & orbit

$$\vec{J}_{\scriptscriptstyle M} = \nabla \times \vec{M}$$

$$\nabla \cdot \vec{E} = \frac{1}{\varepsilon_0} \left(\rho - \nabla \cdot \vec{P} \right)$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial B}{\partial t}$$

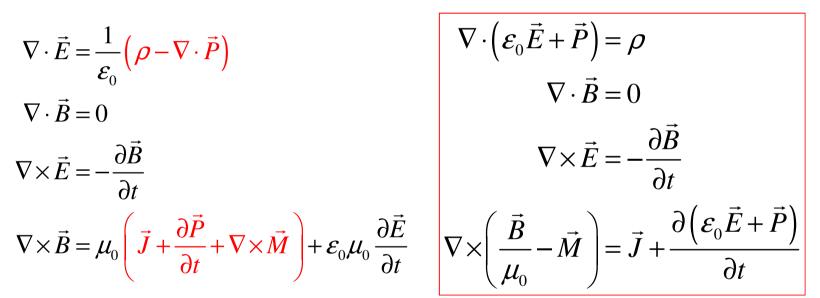
$$\nabla \times \vec{B} = \mu_0 \left(\vec{J} + \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M} \right) + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

$$\rho_P = -\nabla \cdot \vec{P}$$

$$\int \vec{J}_P = \frac{\partial \vec{P}}{\partial t}$$

$$\vec{J}_M = \nabla \times \vec{M}$$

Maxwell's Equations


Rearranging the source terms in Maxwell's equations

$$\nabla \cdot \vec{E} = \frac{1}{\mathcal{E}_0} \left(\rho - \nabla \cdot \vec{P} \right)$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \left(\vec{J} + \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M} \right) + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

MAXWELL'S EQUATIONS REVISITED

substitution of source terms ρ_a , J_a

$$\nabla \cdot \left(\mathbf{\varepsilon}_{0} \vec{E} + \vec{P} \right) = \rho$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

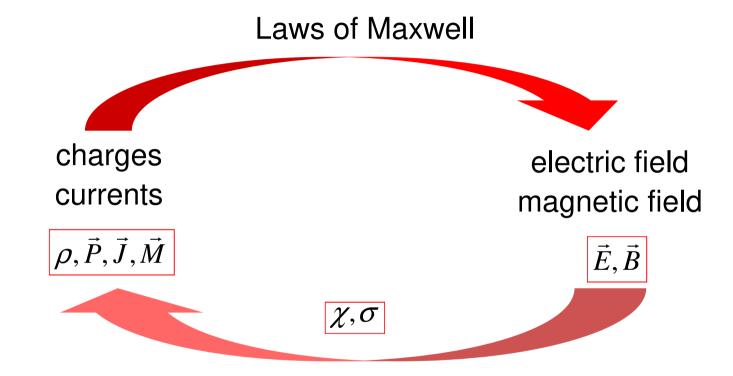
$$\nabla \times \left(\frac{\vec{B}}{\mu_{0}} - \vec{M} \right) = \vec{J} + \frac{\partial \left(\mathbf{\varepsilon}_{0} \vec{E} + \vec{P} \right)}{\partial t}$$

$$\nabla \cdot \vec{D} = \rho$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$



introduction of *D* and *H* fields:

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

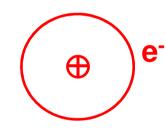
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$$

CONSTITUTIVE EQUATIONS

Constitutive equations

electrical properties, optical properties, absorption

MICROSCOPIC THEORY OF LINEAR ISOTROPIC MATERIALS


charge *e* (1.602 x 10⁻¹⁹ C)

Microscopic Theory for Dielectrics

origin of electric susceptibility?

$$\vec{P} = \varepsilon_0 \chi \vec{E}$$

Static Electronic Polarization shape of the electron cloud in a material is influenced by the electric field mass $m_{\rm e}$ (9.11 x 10⁻³¹ kg)

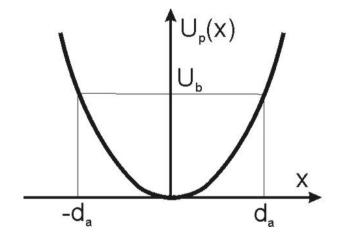
Liquid Crystals

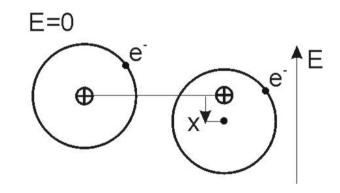
STATIC ELECTRONIC POLARIZATION

force on the electron due to electric field

$$\vec{F}_{E} = -e\vec{E}$$

force on the electron due to potential well U_p


$$U_p(x) = \frac{a}{2}x^2$$


$$U_p(x) = \frac{a}{2}x^2 \qquad F_p(x) = -\frac{dU_p}{dx} = -ax$$

STATIC ELECTRONIC POLARIZATION

static: equilibrium of forces: $F_{tot}=0$

$$\vec{F}_E = -e\vec{E}$$

$$\vec{F}_p(x) = -a\vec{x}$$

$$\vec{x} = -\frac{e}{a}\vec{E}$$

$$\vec{x} = -\frac{e}{a}\vec{E}$$

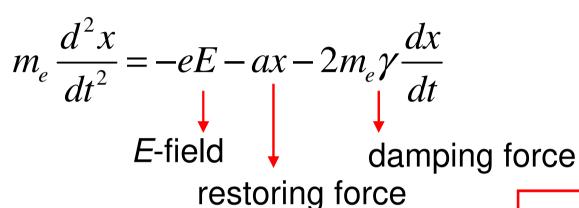
dipole moment

$$\vec{p} = -e\vec{x} = \frac{e^2}{a}\vec{E}$$

$$\vec{p} = \alpha \varepsilon_0 \vec{E}$$

$$\alpha_{e,s} = \frac{Ze^2}{\varepsilon_0 a}$$

polarizability of an atom with Z e


16

DYNAMIC ELECTRONIC POLARIZATION

differential equation of motion: $m.a=\Sigma F$

resonance frequency:

 $\omega_0^2 = \frac{a}{m_e}$

periodic regime

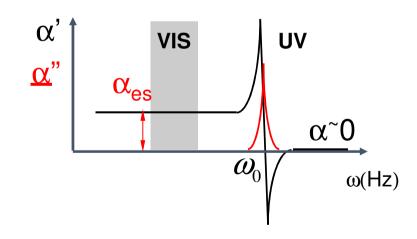
$$\frac{\partial}{\partial t} \to i\omega$$

$$x = -\frac{eE}{m_e(\omega_0^2 - \omega^2 + i2\gamma\omega)}$$

DYNAMIC ELECTRONIC POLARIZATION

atomic polarizability

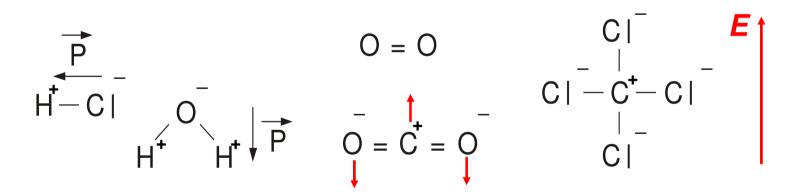
$$\alpha_e = \frac{Ze^2}{\varepsilon_0 m_e} \frac{1}{\omega_0^2 - \omega^2 + i2\gamma\omega}$$


Resonance phenomenon

$$\alpha_e = \alpha' - i\alpha''$$

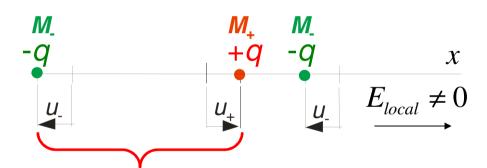
$$\alpha_{e,s} = \frac{Ze^2}{\varepsilon_0 m_e \omega_0^2}$$

IONIC POLARIZATION


Materials with partially ionized atoms

- permanent dipole moment (at *E*=0)
- ions are displaced due to the local field

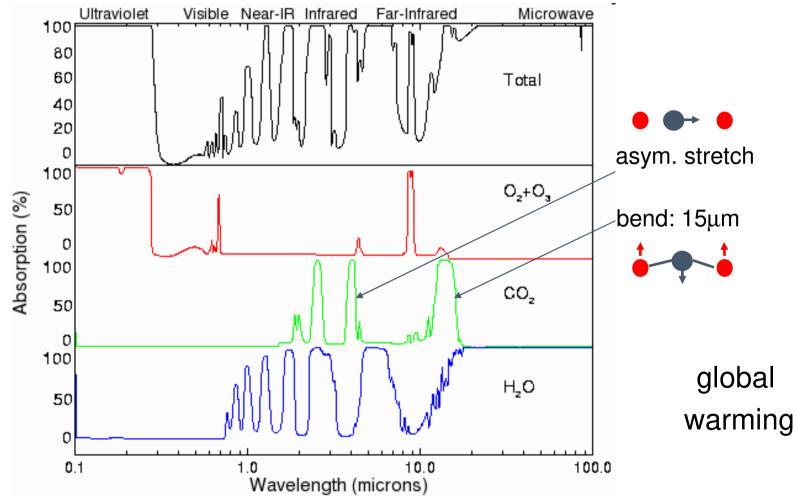
=> induced dipole moment


IONIC POLARIZATION

Solid state: ions move with respect to a grid

equilibrium situation: ions at distance *d*

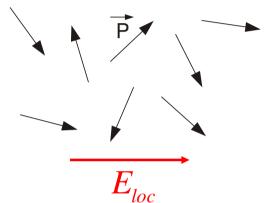
out of equilibrium M_{+} in phase deviation u << d



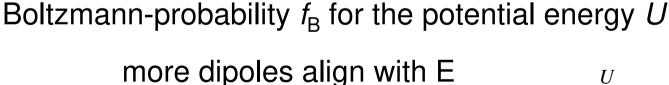
restoring force between two ions: leads to resonance

$$\alpha(\omega) = \frac{q^2}{\varepsilon_0 (2C - M\omega^2)}$$

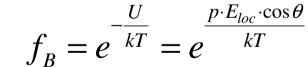
ABSORPTION BY THE ATMOSPHERE

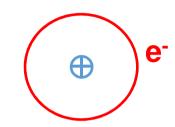


ORIENTATION POLARIZATION


Permanent dipoles in an electric field

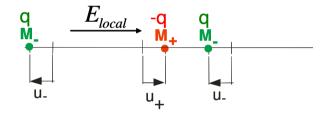
potential energy


$$U = -\vec{p} \cdot \vec{E}_{loc} = -p \cdot E_{loc} \cdot \cos \theta$$



MICROSCOPIC THEORY OF LINEAR ISOTROPIC MATERIALS

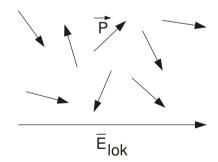
Microscopic Theory for Dielectrics


 electronic polarization resonance in UV

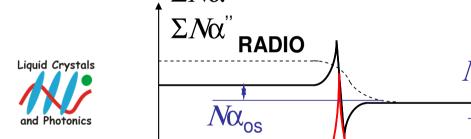
ionic polarization

resonance in IR

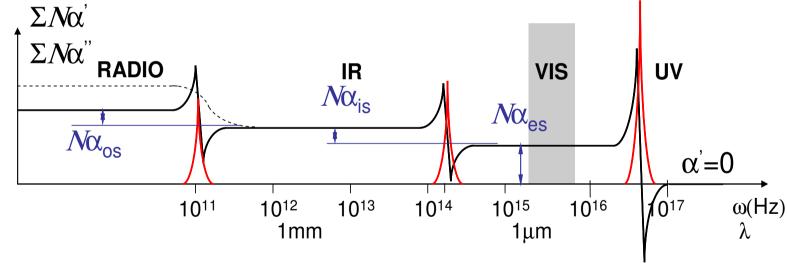
orientation polarization



Liquid Crystals


relaxation or resonance in far IR

GENERAL DIELECTRIC BEHAVIOR

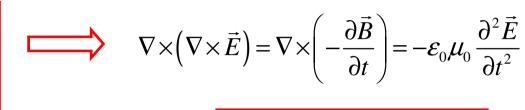

different resonance/relaxation processes sum of all polarizabilities per unit volume:

rotation pol

ionic pol

Kristiaan Neyts 24


electronic pol


PROPAGATION OF PLANE MONOCHROMATIC WAVES

Maxwell equations

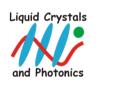
in vacuum

wave equation in vacuum

$$\nabla^2 \vec{E} - \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

solution
$$\vec{E}_0 \cos(\omega t - \vec{k} \cdot \vec{r}) = \vec{E}_0 \operatorname{Re} \left[e^{i(\omega t - \vec{k} \cdot \vec{r})} \right]$$

$$k = \frac{\omega}{c}$$

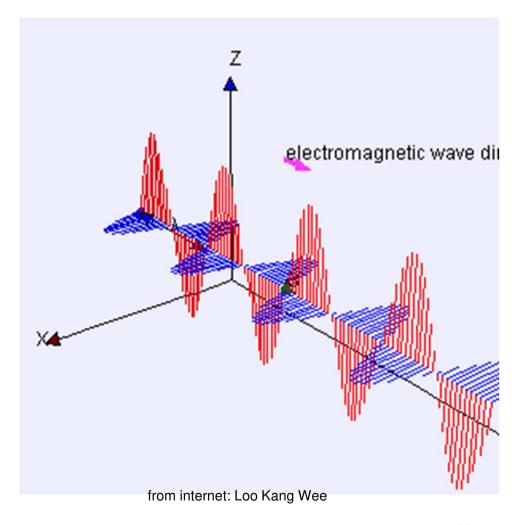

25

LIGHT IS ELECTROMAGNETIC RADIATON

Electric field E

Magnetic field B

in vacuum

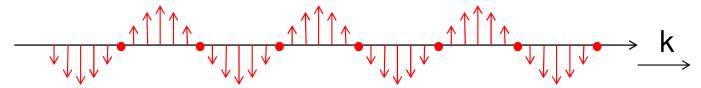


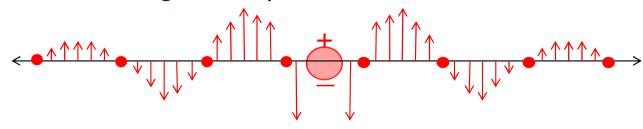
polarization propagation speed c frequency f wavelength λ

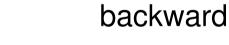
$$k = \frac{2\pi}{\lambda}$$

LIGHT IN VACUUM

superposition of electric and magnetic fields in vacuum "light waves, E fields and M fields do not interact"

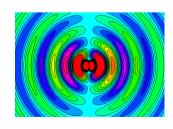




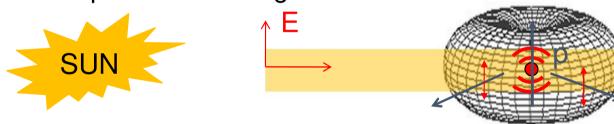

LIGHT SCATTERING BY A MOLECULE

incident plane wave (linearly polarized)

scattered light of a particle with r $<< \lambda$



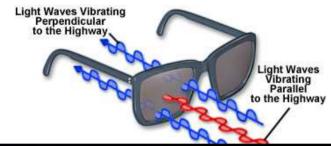
Liquid Crystals

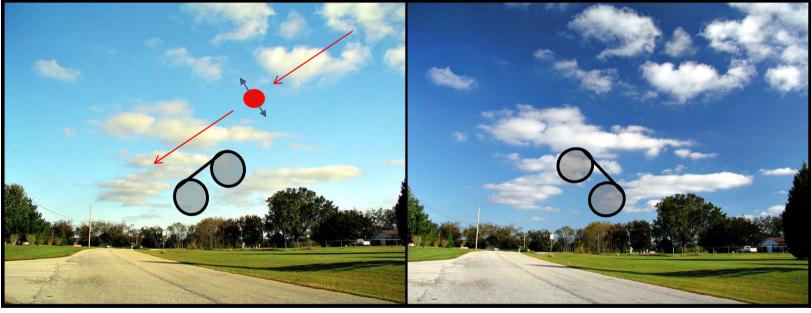


BLUE SKY

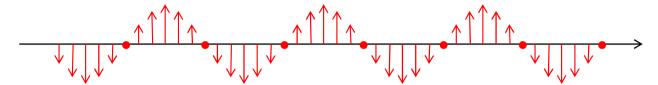
Light and a single atom

sunlight incident on N₂ or O₂
makes electrons oscillate
dipole antenna light emission




"Rayleigh scattering" in the atmosphere linearly polarized more blue than red $\sim (1/\lambda)^4$

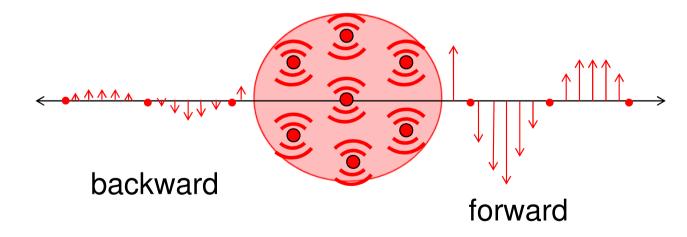
BLUE SKY



http://district196.org/avhs/dept/science/acc_physics/pages/polarized.html

LIGHT SCATTERING BY A PARTICLE

incident plane wave

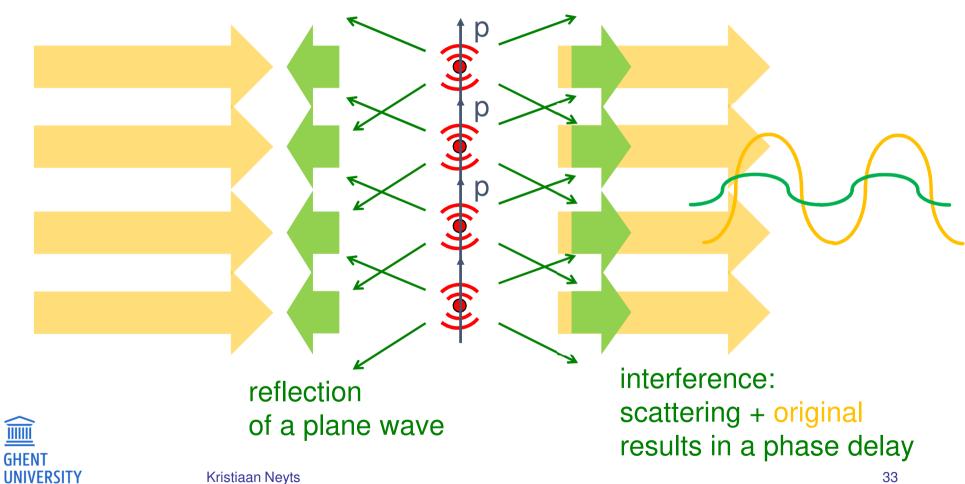


scattered light of a particle with r order of λ (Mie scattering)

LIGHT SCATTERING BY A PARTICLE

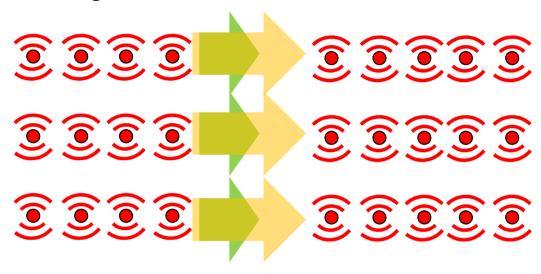
Mie scattering of unpolarized light by spheres

$$\sim \left(n_2^2 - n_1^2\right)^2$$



www.citylab.com

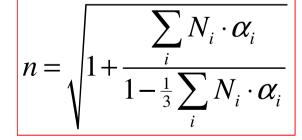
Karl, the SFO fog


LIGHT AND INDUCED DIPOLES

Light and a layer of atoms

LIGHT AND INDUCED DIPOLES

Light and a volume of atoms


Phase delay of the forward scattered light

light has:

... lower speed: c/n

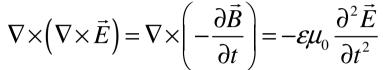
... same frequency f

... shorter wavelength λ/n

PROPAGATION OF PLANE MONOCHROMATIC WAVES

Maxwell equations in a medium

$$\nabla \cdot \vec{E} = 0$$


$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial B}{\partial t}$$

$$\nabla \times \vec{B} = \varepsilon \mu_0 \frac{\partial \vec{E}}{\partial t}$$

wave equation in vacuum

$$\nabla^2 \vec{E} - \varepsilon \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

$$\vec{E}_0 \cos(\omega t - \vec{k} \cdot \vec{r}) = \vec{E}_0 \operatorname{Re} \left[e^{i(\omega t - \vec{k} \cdot \vec{r})} \right]$$

$$k^{2} - \varepsilon \mu_{0} \omega^{2} = 0 \qquad k = \frac{\omega}{c} \sqrt{\frac{\varepsilon}{\varepsilon_{0}}} = \frac{\omega}{c} n$$

Kristiaan Neyts

35