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Electrical and optical properties of materials (6h)

Polarizability of dielectric materials

Light propagation

Conductors and semiconductors

Light propagation in anisotropic media

Polarized light

Spontaneous and stimulated emission

OVERVIEW
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different resonance/relaxation processes

sum of all polarizabilities per unit volume:

1011 1012 1013 1014 1015 1016 1017

VISIR UVRADIO

ω(Hz)
1µm1mm λ

α’=0

ΣΝα’

ΣΝα’’

Ναes

Ναis

Ναos

electronic polionic polrotation pol
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PROPAGATION OF PLANE MONOCHROMATIC WAVES
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Light incident in air:

wavelength λ
incidence angle θ

there is a translation symmetry:

the problem is invariant 

for a horizontal shift over

the same invariance

must be present in the medium 

λ
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REFRACTION OF LIGHT
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Light incident from air 

on a surface with angle θ
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Refraction of light
REFRACTION OF LIGHT
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REFRACTION OF LIGHT

the wisdom of the spear-fisher

“objects are deeper than they appear”

http://www.freeendlessinfo.com/2012/05/why-does-water-always-seem-

shallower-than-it-is/#.VCzVXRb6Svk
http://plus.maths.org/content/light-bends-wrong-way

national Geographic
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C.1. The 1D-Drude Free-Electron Model for Metals

most electrons accelerate under influence of the field

some electrons collide with ions, 
then thermal distribution (v~0)

average time between collisions τ

conductivity depends on the frequency:

E

e-

B.9. MICROSCOPIC THEORY FOR CONDUCTORS AND SEMICONDUCTORS
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formula for dielectric constant with conductivity
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The term iω/τ (absorption) 

<< ω2 in the visible spectrum (high ω)

becomes important in the IR

free electron 
oscillation

damping
absorption 

(collisions)

MICROSCOPIC THEORY FOR CONDUCTORS
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MICROSCOPIC THEORY FOR CONDUCTORS

Example:

Silver

Re(ε/ε0)Im(ε/ε0)
Re(n)

Im(n)

nε/ε0

1

τ pω p
ω

ω

transparentreflective
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BAND STRUCTURE IN SEMICONDUCTORS

Only certain states allowed: energy versus n, k

Si, Ge: diamond 

structure,

similar to FCC

each point in the 

diagram is an 

electron state
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INTERBAND TRANSITIONS

Conservation of energy

Conservation of momentum

wave vector of a photon: order 107m-1

dimension of Brillouin zone: 1010m-1

thus: absorption of a photon does not change the k-vector 

of the electron

vertical line in the energy diagram
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INTERBAND TRANSITIONS

Direct and indirect band-gap

phonon

photon

indirect band-gapdirect band-gap
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ABSORPTION OF LIGHT

Most materials: no absorption in the visible region

electrons absorb in the UV; ions absorb in the IR

some exceptions:

Organic molecules 

with large orbitals

Semiconductor electrons

band-gap absorption

Impurity electrons
with large orbitals 
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NEGATIVE REFRACTIVE INDEX MATERIALS

n>1n<0 side view

negative refraction

object seems 

to be above the medium

top view

normal refraction

object seems 

to be higher
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ANISOTROPIC POLARIZABILITY

anisotropic crystal

high polarizability

low polarizability

E

E

superposition

E

p not parallel 
with E

Anisotropic polarizability in a crystalline structure
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Tensor relation between P and E

P not parallel with E

0

0i ij j

P E

P E

χε
χ ε

=
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� �
Tensor notation:

Shortened notation:

0

0

x xx x

y yy y

P E

P E

χ ε
χ ε

=
=

for special choice of xy axes:

general choice of xy axes:

E P
x

y

ANISOTROPIC POLARIZATION
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Tensor relation between D and E

D, P normally not parallel with E

D lies between E and P

0
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ANISOTROPIC POLARIZATION



Kristiaan Neyts 19

Alternatively, matrix algebra teaches us:
“a symmetric matrix can always be diagonalized
by an appropriate coordinate transformation”
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The new axes are called the principle axes 

of the ellipsoid (or the matrix)

principle indices

of refraction 

ANISOTROPIC POLARIZATION
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Introduction of the impermeability tensor
Inverse of the dielectric tensor (without dimension)

ε=D E
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ANISOTROPIC POLARIZATION
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Now we use the impermeability tensor

to eliminate E (instead of D) by

the energy density becomes:

0
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The normalized equation is the index ellipsoid
2 2 2

11 22 33 12 23 31
2 2 2 1X Y Z XY YZ ZXη η η η η η+ + + + + =

the symmetric impermeability tensor

is represented by a quadric

Short notation: 1
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The wave equation relates E and D
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THE INDEX ELLIPSOID

Light propagation in an anisotropic medium?
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Plane wave solution for D?

substitution of the proposed periodic solution:
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s: unit vector along k
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Choose the z-axis along the k-vector, then
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Conclusion:

to find the wave solutions with k along s:

• use the index ellipsoid

• intersect with a plane perpendicular to s

• the result is an ellipse

• the principle axes of the ellipse give the eigenmodes for D

• the lengths of the intersections give the refractive indices
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From the laws of Maxwell, we find:
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; ;⊥ ⊥ ⊥H k D H D k

Thus D, H and k form a set of mutually perpendicular vectors 

E is perpendicular to H, and lies therefore in the D,k plane

For anisotropic materials: 

E is normally not parallel to D

E is normally not perpendicular to k

H

k

D

H

k

D

E

PROPERTIES OF EIGENMODES
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Three optical classes

Biaxial crystals:

2 optical axes

Uniaxial crystals:

1 optical axis

Isotropic materials: 

all directions optical axes
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OPTICAL CLASSIFICATION OF ANISOTROPIC MEDIA
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Relation and optical class and symmetry elements 

of a crystal?

Cubic crystal: three axes x,y,z are equivalent

ellipsoid with three equivalent axes is a sphere

therefore

the dielectric tensor is isotropic

Point group of a crystal:

set of rotational/mirror symmetries of a crystal 

1 2 3
n n n n= = =

OPTICAL CLASSIFICATION OF ANISOTROPIC MEDIA
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point groups of crystals 

OPTICAL CLASSIFICATION OF ANISOTROPIC MEDIA
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Overview of all point groups

Uniaxial

Uniaxial

Isotropic

622

3m

43m

In literature: often this is called S6  rotation and mirror image

OPTICAL CLASSIFICATION OF ANISOTROPIC MEDIA
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dielectric constant

index ellipsoid

rotational symmetry around the z-axis

we can assume that the k vector is in the yz plane

wave vector makes an angle θ with the z-axis
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LIGHT PROPAGATION IN UNIAXIAL CRYSTALS
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Index ellipsoid:
2 2 2
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plane perpendicular to the k-vector

intersection with index ellipsoid is an ellipse

two eigenmodes:

- ordinary mode:     Do along x with no

- extra-ordinary mode:   n(2) or neff
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LIGHT PROPAGATION IN UNIAXIAL CRYSTALS
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Uniaxial material, optic axis in the plane (A-plate)

positive anisotropy: ne>no
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Example: half-wave plate

the wave E2 is delayed by a phase π
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z=0: linearly polarized at 45o

phase delay π
mirror polarization plane

quarter wave plate

E2 phase delay π/2
left circular polarization

E counter-clockwise in time

(left-handed helix in space)

WAVELENGTH RETARDATION PLATES
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right-handed circularly polarized light (propagation along z)

x

variation of E with position:
right handed helix

variation of E with time
(clockwise when seen

from the destination)
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POLARIZATION STATES OF LIGHT
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Polarisation Jones vector 

Linearly polarised parallel to the x-axis 
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Linearly polarised parallel to the y-axis 
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the x-axis 

( )
( )

cos

sin

α
α

 
 
 

 

Circularly polarised (right) 1

2

1

i

 
 
 

 

Circularly polarised (left) 1

2

1

i

 
 − 

 

 

( ) ( )
Re

i t kz

x x y yJ J e
ω − = + E e e

POLARIZATION STATES OF LIGHT (TOOLBOX 2)

t =0: ex

t =π/2ω: ey

x

y

LH pol

( ) ( )
Re

i t kz

x yi e
ω − − e e



Kristiaan Neyts 41

wavelength in two media

distance between two wave fronts 

along the surface should be equal
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Light incident from an isotropic medium 

into an anisotropic medium

k-vector represents periodicity of a wave

Tangential component kt of

all k-vectors should be the same

Intersection with normal surface?

two solutions: bi-refringence

double refraction

0 0 0

2
k n n

c

ω π
λ

= =

DOUBLE REFRACTION
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Linear dichroism

anisotropic absorption

linear polarizer: y polarization is absorbed, x-pol is transmitted
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DICHROISM
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Polaroid polarizer
oriented absorbing polymer molecules

Wire grid polarizer
parallel metal wires absorb the E-field component parallel 
to the wires

DICHROISM


