

ELECTRONICS AND INFORMATION SYSTEMS DEPARTMENT LIQUID CRYSTALS AND PHOTONICS RESEARCH GROUP

LIQUID CRYSTALS AND LIGHT EMITTING

MATERIALS FOR PHOTONIC APPLICATIONS

Kristiaan Neyts

April 2018

Lecture series at WAT in Warsaw

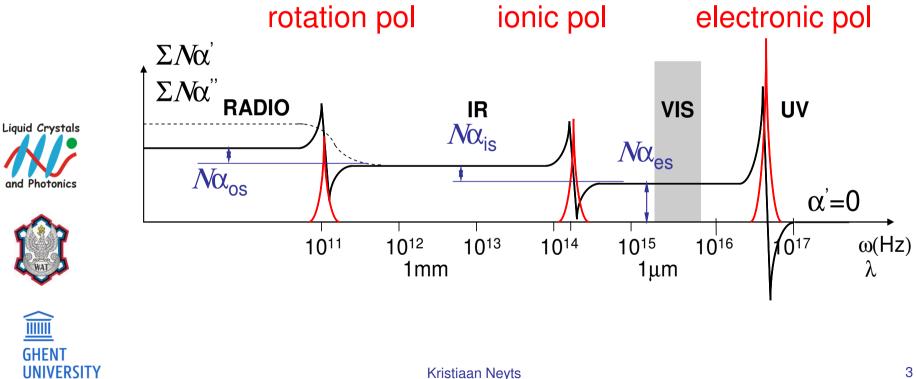
Electrical and optical properties of materials (6h)

Polarizability of dielectric materials Light propagation Conductors and semiconductors Light propagation in anisotropic media Polarized light Spontaneous and stimulated emission

GENERAL DIELECTRIC BEHAVIOR

different resonance/relaxation processes

sum of all polarizabilities per unit volume:



PROPAGATION OF PLANE MONOCHROMATIC WAVES

Maxwell equations

Liquid Crystals

 $\overline{\mathbb{III}}$

GHENT UNIVERSITY wave equation in vacuum

in a medium $\nabla \times \left(\nabla \times \vec{E} \right) = \nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = -\varepsilon \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2}$ $\nabla \cdot \vec{E} = 0$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla^2 \vec{E} - \mathcal{E} \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = 0$ $\nabla \times \vec{B} = \mathcal{E}\mu_0 \frac{\partial \vec{E}}{\partial t}$ $\vec{E}_0 \cos\left(\omega t - \vec{k} \cdot \vec{r}\right) = \vec{E}_0 \operatorname{Re} \left| e^{i\left(\omega t - \vec{k} \cdot \vec{r}\right)} \right|$ solution $k^{2} - \varepsilon \mu_{0} \omega^{2} = 0$ $k = \frac{\omega}{c} \sqrt{\frac{\varepsilon}{\varepsilon_{0}}} = \frac{\omega}{c} n$ **Kristiaan Neyts** 4

REFRACTION OF LIGHT

Light incident in air: wavelength λ incidence angle θ

there is a translation symmetry: the problem is invariant for a horizontal shift over $\frac{\lambda}{\sin\theta}$

Liquid Crystals

the same invariance

must be present in the medium

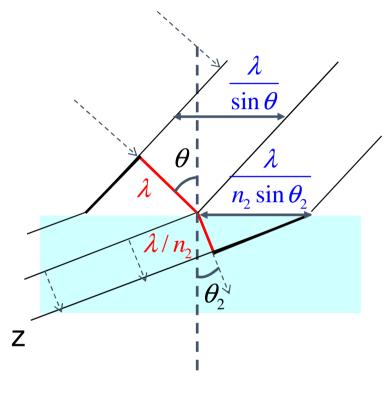
θ	
$\frac{\lambda}{\sin\theta}$	

REFRACTION OF LIGHT

Light incident from air on a surface with angle θ

$$\frac{\lambda}{\sin\theta} = \frac{\lambda}{n_2\sin\theta_2}$$

 $\sin\theta = n_2 \sin\theta_2$



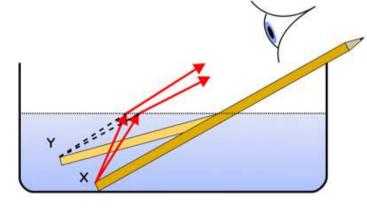
Law of Snell

REFRACTION OF LIGHT

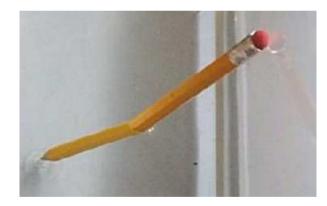
the wisdom of the spear-fisher

"objects are deeper than they appear"

national Geographic



http://www.freeendlessinfo.com/2012/05/why-does-water-always-seem-shallower-than-it-is/#.VCzVXRb6Svk



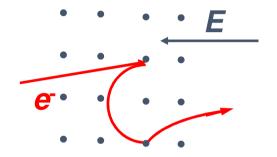
http://plus.maths.org/content/light-bends-wrong-way

B.9. MICROSCOPIC THEORY FOR CONDUCTORS AND SEMICONDUCTORS

C.1. The 1D-Drude Free-Electron Model for Metals

most electrons accelerate under influence of the field

some electrons collide with ions, then thermal distribution ($\nu \sim 0$) average time between collisions τ



conductivity depends on the frequency:

$$J = \sigma E \qquad \Longrightarrow \qquad \sigma(\omega) = \frac{Ne^2}{m(i\omega + 1/\tau)}$$

unit $1/\Omega m$

MICROSCOPIC THEORY FOR CONDUCTORS

formula for dielectric constant with conductivity

$$\varepsilon = \varepsilon_0 \left(1 + \chi - i \frac{\sigma}{\omega \varepsilon_0} \right)$$

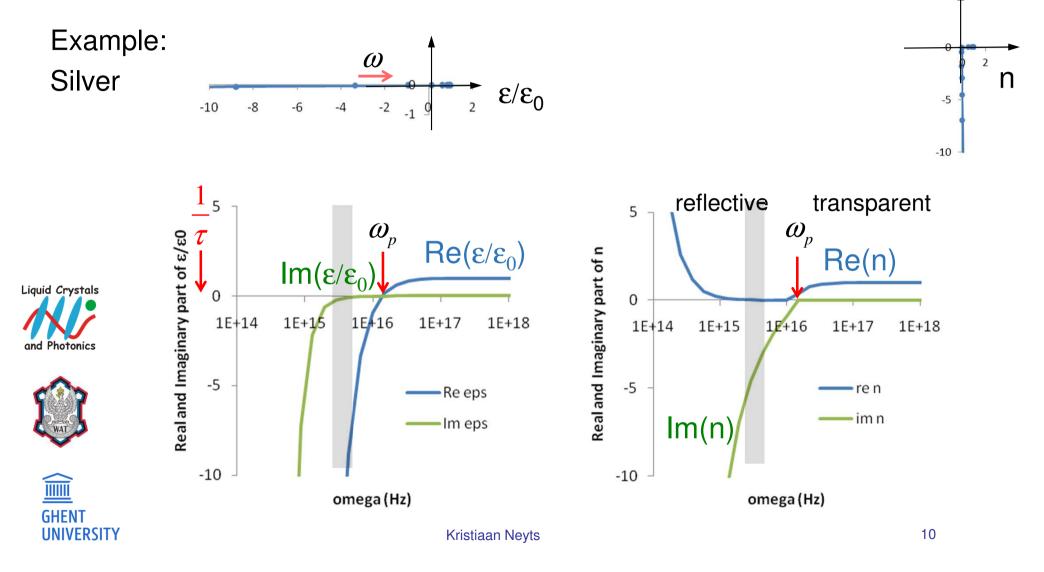
$$\sigma(\omega) = \frac{Ne^2}{m(i\omega + 1/\tau)}$$

$$\varepsilon = \varepsilon_0 \left(1 + \chi + \frac{Ne^2}{m\varepsilon_0} \cdot \frac{1}{-\omega^2 + i\omega/\tau} \right)$$
free electron damping oscillation absorption (collisions)

The term io/ τ (absorption)

 $<<\omega^2$ in the visible spectrum (high $\omega)$ becomes important in the IR

MICROSCOPIC THEORY FOR CONDUCTORS



BAND STRUCTURE IN SEMICONDUCTORS

Only certain states allowed: energy versus n, k

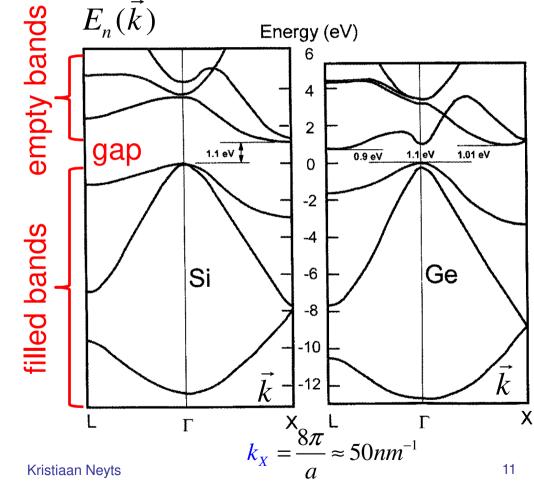
Si, Ge: diamond structure, similar to FCC gap a/4a=0.5 nm filled bands each point in the diagram is an electron state

Liquid Crystals

and Photonics

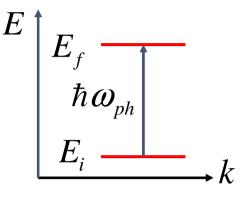
GHENT

UNIVERSITY



INTERBAND TRANSITIONS

Conservation of energy $E_f = E_i + \hbar \omega_{ph}$ Conservation of momentum $\hbar \vec{k}_{f} = \hbar \vec{k}_{i} + \hbar \vec{k}_{nh}$



Liquid Crystals

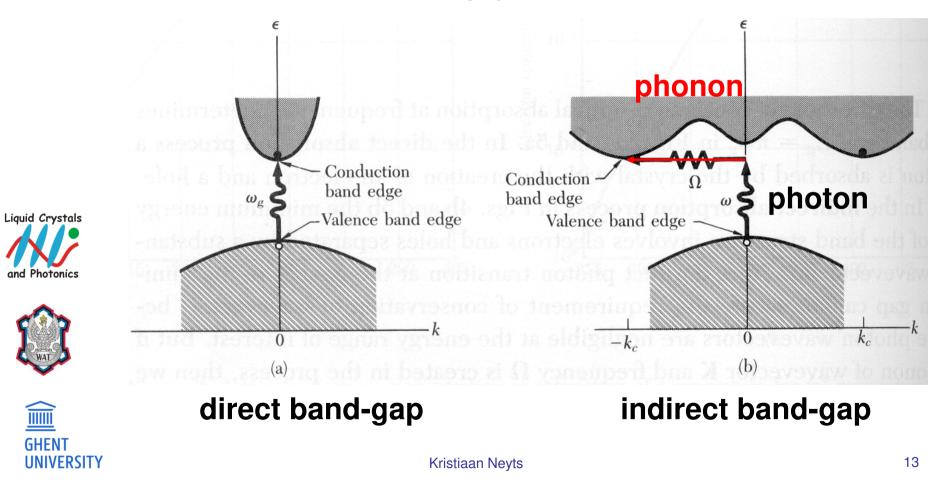
wave vector of a photon: order 10⁷m⁻¹ dimension of Brillouin zone: 10¹⁰m⁻¹

$$\hbar \vec{k}_{ph} << \hbar \vec{k}_i, \hbar \vec{k}_f$$

GHENT UNIVERSITY thus: absorption of a photon does not change the k-vector of the electron $\hbar \vec{k}_{f} \approx \hbar \vec{k}_{i}$ vertical line in the energy diagram

INTERBAND TRANSITIONS

Direct and indirect band-gap



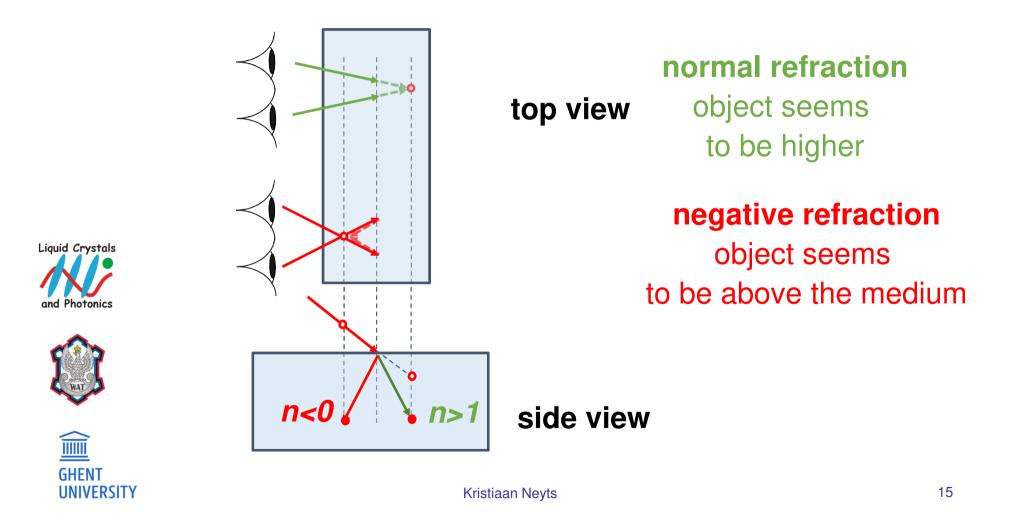
ABSORPTION OF LIGHT

Most materials: no absorption in the visible region electrons absorb in the UV; ions absorb in the IR some exceptions: Semiconductor electrons band-gap absorption

Impurity electrons with large orbitals

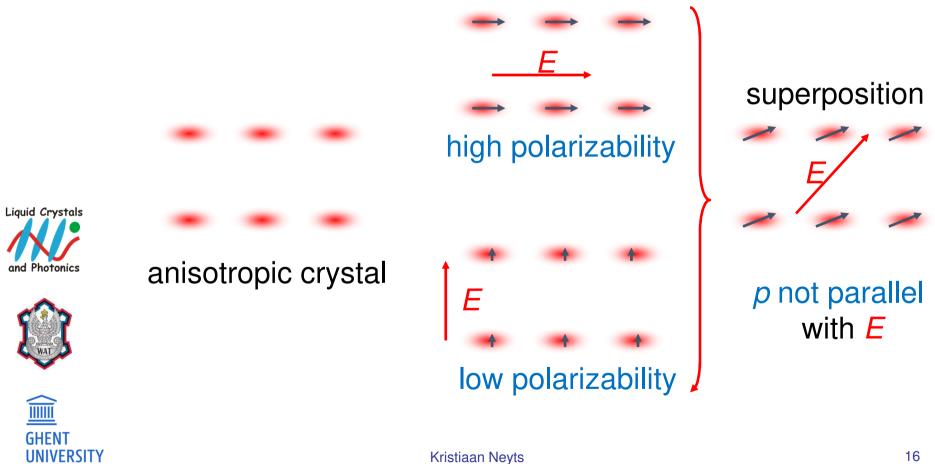
Organic molecules with large orbitals

NEGATIVE REFRACTIVE INDEX MATERIALS

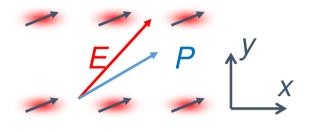


ANISOTROPIC POLARIZABILITY

Anisotropic polarizability in a crystalline structure



Tensor relation between *P* and *E*



P not parallel with E

for special choice of xy axes:

$$P_{x} = \chi_{xx} \mathcal{E}_{0} E_{x}$$
$$P_{y} = \chi_{yy} \mathcal{E}_{0} E_{y}$$

general choice of xy axes:

Tensor notation:

$$\vec{P} = \overline{\bar{\chi}} \varepsilon_0 \vec{E}$$

Shortened notation:

$$P_i = \chi_{ij} \varepsilon_0 E_j$$

GHENT UNIVERSITY

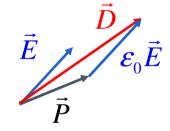
Liquid Crystals

Tensor relation between *D* and *E*

Tensor notation:IShortened notation:I

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \overline{\overline{\varepsilon}} \vec{E}$$
$$D_i = \varepsilon_{ij} E_j$$

D, P normally not parallel with ED lies between E and P



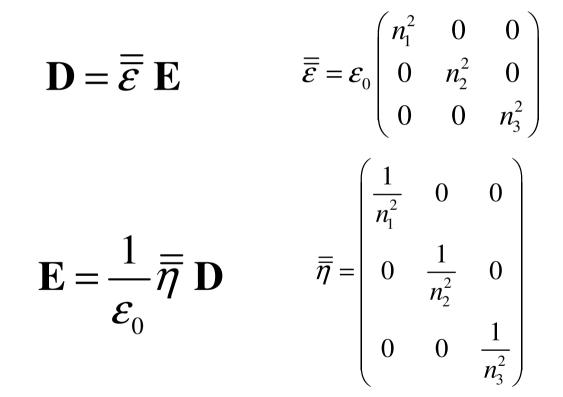
Alternatively, matrix algebra teaches us: "a symmetric matrix can always be diagonalized by an appropriate coordinate transformation"

$$\overline{\overline{\mathcal{E}}} = \begin{pmatrix} \mathcal{E}_{11} & \mathcal{E}_{12} & \mathcal{E}_{13} \\ \mathcal{E}_{21} & \mathcal{E}_{22} & \mathcal{E}_{23} \\ \mathcal{E}_{31} & \mathcal{E}_{32} & \mathcal{E}_{33} \end{pmatrix} \rightarrow \begin{pmatrix} \mathcal{E}_1 & 0 & 0 \\ 0 & \mathcal{E}_2 & 0 \\ 0 & 0 & \mathcal{E}_3 \end{pmatrix}$$

The new axes are called the principle axes _ of the ellipsoid (or the matrix)

$$\overline{\overline{\varepsilon}} = \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix} = \varepsilon_0 \begin{pmatrix} n_1^2 & 0 & 0 \\ 0 & n_2^2 & 0 \\ 0 & 0 & n_3^2 \end{pmatrix}$$
principle indices of refraction

Introduction of the impermeability tensor $\overline{\eta}$ Inverse of the dielectric tensor (without dimension)



Now we use the impermeability tensor

$$\overline{\overline{\eta}} = \begin{pmatrix} \eta_{11} & \eta_{12} & \eta_{13} \\ \eta_{21} & \eta_{22} & \eta_{23} \\ \eta_{31} & \eta_{32} & \eta_{33} \end{pmatrix}$$

to eliminate *E* (instead of *D*) by
$$\mathbf{E} = \frac{1}{\varepsilon_0} \overline{\overline{\eta}} \mathbf{D}$$

the energy density becomes:

$$\frac{1}{2} \mathbf{D} \cdot \mathbf{E} = \frac{1}{2\varepsilon_0} \mathbf{D} \overline{\eta} \mathbf{D}$$

$$\Longrightarrow \quad \varepsilon_0 \mathbf{D} \cdot \mathbf{E} = \eta_{11} D_x^2 + \eta_{22} D_y^2 + \eta_{33} D_z^2 + 2\eta_{12} D_x D_y + 2\eta_{23} D_y D_z + 2\eta_{31} D_z D_x$$
This is an ellipsoid, we normalize by: $\mathbf{v} = \frac{D_i}{2\varepsilon_0} \mathbf{D} \cdot \mathbf{E} = \frac{1}{2\varepsilon_0} \mathbf{D} \cdot \mathbf{E} =$

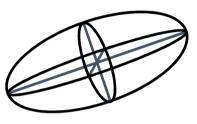
GHENT UNIVERSITY This is an ellipsoid, we normalize by: $X_i = \frac{D_i}{\sqrt{\varepsilon_0 \mathbf{D} \cdot \mathbf{E}}}$ $\mathbf{X} \overline{\overline{\eta}} \mathbf{X} = 1$

FRESNEL'S EQUATION

The normalized equation is the index ellipsoid $\mathbf{X}\overline{\overline{\eta}}\mathbf{X}=1$

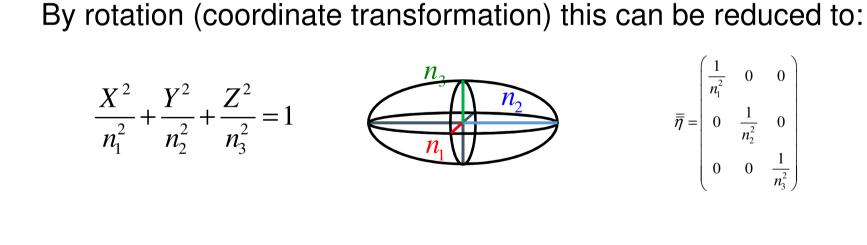
$$\eta_{11}X^2 + \eta_{22}Y^2 + \eta_{33}Z^2 + 2\eta_{12}XY + 2\eta_{23}YZ + 2\eta_{31}ZX = 1$$

the symmetric impermeability tensor is represented by a quadric Short notation: $X_i X_j \eta_{ij} = 1$



GHENT

UNIVERSITY



Light propagation in an anisotropic medium?

The wave equation relates
$$E$$
 and D
 $\nabla \times (\nabla \times \mathbf{E}) = -\mu_0 \frac{\partial^2 \mathbf{D}}{\partial t^2}$
Let us now eliminate E : $\mathbf{E} = \frac{1}{\varepsilon_0} \overline{\overline{\eta}} \mathbf{D}$ $\overline{\overline{\eta}} = \begin{pmatrix} \eta_{11} & \eta_{12} & \eta_{13} \\ \eta_{21} & \eta_{22} & \eta_{23} \\ \eta_{31} & \eta_{32} & \eta_{33} \end{pmatrix}$

Liguid Crystals

and Photonics

$$\nabla \times \left(\nabla \times \overline{\overline{\eta}} \mathbf{D} \right) = -\varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{D}}{\partial t^2}$$

GHENT UNIVERSITY

Kristiaan Neyts

Plane wave solution for *D*?

$$\mathbf{D} = \mathbf{D}_0 e^{\mathbf{i}(\omega t - \mathbf{k} \cdot \mathbf{r})} \qquad \nabla \times \left(\nabla \times \overline{\overline{\eta}} \mathbf{D}\right) = -\varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{D}}{\partial t^2}$$

substitution of the proposed periodic solution:

$$\mathbf{k} \times (\mathbf{k} \times \overline{\overline{\eta}} \mathbf{D}) = \varepsilon_0 \mu_0 \omega^2 \mathbf{D}$$

$$\mathbf{k} = k \mathbf{e}_k = \frac{\omega}{c} n \cdot \mathbf{s} = \sqrt{\varepsilon_0 \mu_0} \omega n \cdot \mathbf{s}$$

$$\mathbf{s} \times (\mathbf{s} \times \overline{\overline{\eta}} \mathbf{D}) = -\frac{1}{n^2} \mathbf{D}$$

$$\mathbf{s}: \text{ unit vector along } \mathbf{k}$$

Kristiaan Neyts

$$\mathbf{s} \times \left(\mathbf{s} \times \overline{\overline{\eta}} \mathbf{D} \right) = -\frac{1}{n^2} \mathbf{D}$$
$$\mathbf{s} \cdot \left(\mathbf{s} \cdot \overline{\overline{\eta}} \mathbf{D} \right) - \overline{\overline{\eta}} \mathbf{D} \left(\mathbf{s} \cdot \mathbf{s} \right) = -\frac{1}{n^2} \mathbf{D}$$

Choose the *z*-axis along the *k*-vector, then $\mathbf{s} = \mathbf{e}_z$ $\mathbf{e}_z \cdot (\overline{\overline{\eta}} \mathbf{D})_z - \overline{\overline{\eta}} \mathbf{D} = -\frac{1}{n^2} \mathbf{D}$ $\mathbf{e}_z \cdot (\overline{\overline{\eta}} \mathbf{D})_z - \mathbf{e}_x \cdot (\overline{\overline{\eta}} \mathbf{D})_x - \mathbf{e}_y \cdot (\overline{\overline{\eta}} \mathbf{D})_y - \mathbf{e}_z \cdot (\overline{\overline{\eta}} \mathbf{D})_z = -\frac{1}{n^2} \mathbf{D}$

Kristiaan Neyts

This is an eigenvalue problem for a 2x2 matrix: $\begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix}$ solution:

- two eigenvalues $1/n^2$
- two eigenmodes for the vector

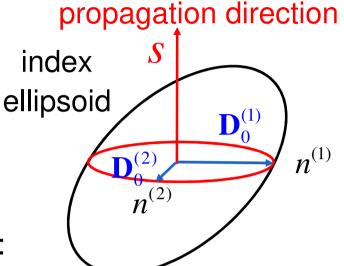
$$\begin{pmatrix} D_x \\ D_y \end{pmatrix}$$

$$\mathbf{D} = \mathbf{D}_0 \, \mathrm{e}^{\mathrm{i} \left(\omega t - \frac{\omega}{c} n \mathbf{s} \cdot \mathbf{r} \right)}$$

Conclusion:

to find the wave solutions with *k* along *s*:

- use the index ellipsoid
- intersect with a plane perpendicular to s
- the result is an ellipse
- the principle axes of the ellipse give the eigenmodes for D
- the lengths of the intersections give the refractive indices



GHENT UNIVERSITY

PROPERTIES OF EIGENMODES

$$\mathbf{D} = \mathbf{D}_0 e^{\mathbf{i}(\omega t - \mathbf{k} \cdot \mathbf{r})}$$
$$\mathbf{E} = \mathbf{E}_0 e^{\mathbf{i}(\omega t - \mathbf{k} \cdot \mathbf{r})}$$
$$\mathbf{H} = \mathbf{H}_0 e^{\mathbf{i}(\omega t - \mathbf{k} \cdot \mathbf{r})}$$

From the laws of Maxwell, we find:

$$\nabla \times \mathbf{E} = -\frac{\partial \mu_0 \mathbf{H}}{\partial t} \longrightarrow -i\mathbf{k} \times \mathbf{E} = -i\omega\mu_0 \mathbf{H} \longrightarrow \mathbf{H} \perp \mathbf{E}; \mathbf{H} \perp \mathbf{k}$$
$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} \longrightarrow -i\mathbf{k} \times \mathbf{H} = i\omega \mathbf{D} \longrightarrow \mathbf{D} \perp \mathbf{H}; \mathbf{D} \perp \mathbf{k}$$

GHENT UNIVERSITY

Kristiaan Neyts

Thus D, H and k form a set of mutually perpendicular vectors

E is perpendicular to *H*, and lies therefore in the *D*,*k* plane For anisotropic materials: *E* is normally not parallel to *D E* is normally not perpendicular to *k* H

Three optical classes $\overline{\overline{\varepsilon}} = \varepsilon_0 \begin{pmatrix} n_1^2 & 0 & 0 \\ 0 & n_2^2 & 0 \\ 0 & 0 & n_3^2 \end{pmatrix}$ $n_1 \neq n_2 \neq n_3$ Biaxial crystals: $n_1 < n_2 < n_3$ 2 optical axes $\overline{\overline{\varepsilon}} = \varepsilon_0 \begin{pmatrix} n_o^2 & 0 & 0 \\ 0 & n_o^2 & 0 \\ 0 & 0 & n_o^2 \end{pmatrix}$ Uniaxial crystals: $n_1 = n_2 = n_o$ 1 optical axis $n_3 = n_e$ $\overline{\overline{\varepsilon}} = \varepsilon_0 \begin{pmatrix} n^2 & 0 & 0 \\ 0 & n^2 & 0 \\ 0 & 0 & n^2 \end{pmatrix}$ Isotropic materials: $n_1 = n_2 = n_3 = n$ all directions optical axes

Liquid Crystals

Relation and optical class and symmetry elements of a crystal?

Cubic crystal: three axes *x*,*y*,*z* are equivalent ellipsoid with three equivalent axes is a sphere therefore $n_1 = n_2 = n_3 = n$ the dielectric tensor is isotropic

Liquid Crystals

Point group of a crystal:

set of rotational/mirror symmetries of a crystal

GHENT UNIVERSITY

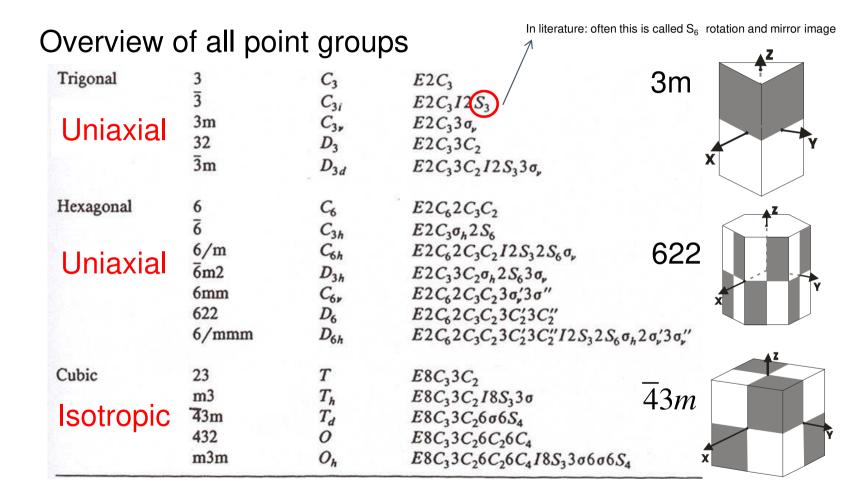
point groups of crystals

Crystal Class Symbol		ymbol	
	International	Schoenflies	Elements of Symmetry
Triclinic	1	C_1	Ε
	1	Ci	EI
Monoclinic	m	C,	$E\sigma_h \qquad 2/m$
	2	C_2	EC ₂
	2/m	Cs C2 C2h	$EC_2 I\sigma_h$
Orthorhombic	2mm	C ₂ ,	$EC_2\sigma'_{\nu}\sigma''_{\nu}$
	222	D_2	$EC_2C_2'C_2''$
	mmm	D_{2h}	$EC_2C_2'C_2''I\sigma_h\sigma_\nu'\sigma_\nu''$
Tetragonal	4	C_4	$E2C_4C_2$
	4 4	S4	$E2S_4C_2$
	4/m	C _{4h}	$E2C_4C_2I2S_4\sigma_h$
	4mm	$C_{4\nu}$	$E2C_4C_22\sigma_{\mu}^{\prime}2\sigma_{\mu}^{\prime\prime}$
Uniaxial	4 2m	D _{2d}	$EC_2C_2'C_2''\sigma_{\nu}'^2S_4\sigma_{\nu}''$
	422	D_4	$E2C_4C_22C_2'2C_2''$
	4/mmm	D_{4h}	$E2C_4C_22C_2'2C_2''I2S_4\sigma_h^2\sigma_y^2\sigma_h^2$

GHENT UNIVERSITY

Liquid Crystals

and Photonics



Liquid Crystals

and Photonics

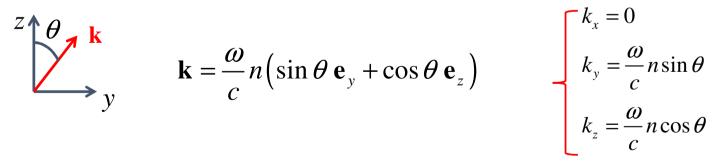
LIGHT PROPAGATION IN UNIAXIAL CRYSTALS

dielectric constant
index ellipsoid
$$\frac{X^2 + Y^2}{n_o^2} + \frac{Z^2}{n_e^2} = 1$$

$$\begin{bmatrix}
n_o^2 & 0 & 0 \\
0 & n_o^2 & 0 \\
0 & 0 & n_e^2
\end{bmatrix}$$

rotational symmetry around the *z*-axis

we can assume that the *k* vector is in the *yz* plane wave vector makes an angle θ with the *z*-axis



GHENT UNIVERSITY

LIGHT PROPAGATION IN UNIAXIAL CRYSTALS

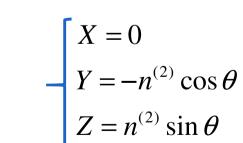
Index ellipsoid:

k-vector ~
$$\mathbf{s} = \sin \theta \, \mathbf{e}_y + \cos \theta \, \mathbf{e}_z$$

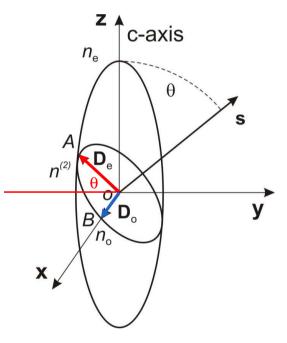
$$\frac{X^2 + Y^2}{n_o^2} + \frac{Z^2}{n_e^2} = 1$$

plane perpendicular to the *k*-vector intersection with index ellipsoid is an ellipse two eigenmodes:

- ordinary mode: D_o along x with n_o
- extra-ordinary mode: $n^{(2)}$ or n_{eff} D_{e} in the yz plane, \perp s



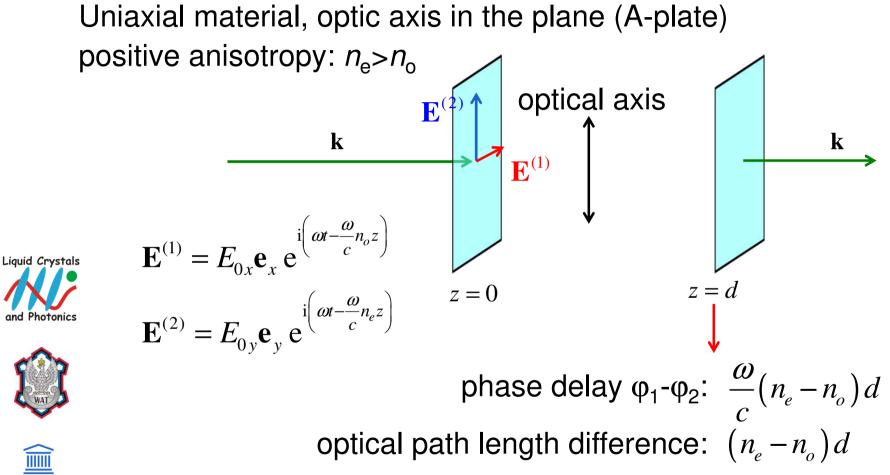
$$\frac{n^{(2)2}\cos^2\theta}{n_o^2} + \frac{n^{(2)2}\sin^2\theta}{n_e^2} = 1$$



GHENT UNIVERSITY

Liquid Crystals

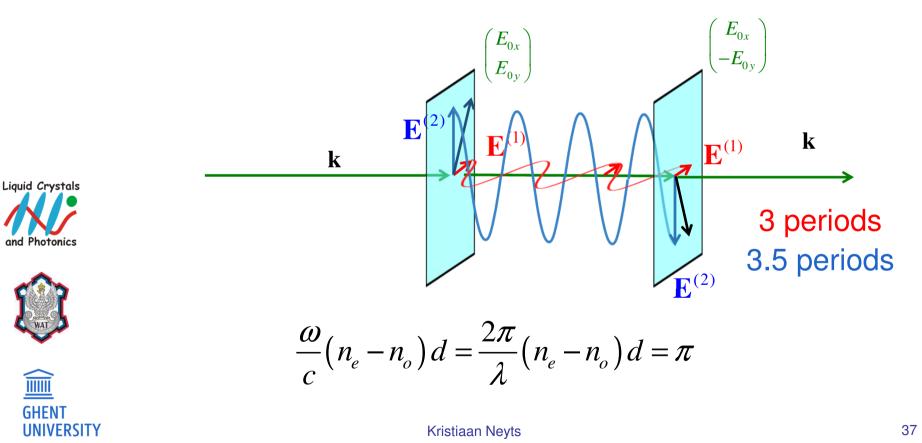
WAVELENGTH RETARDATION PLATES



GHENT UNIVERSITY

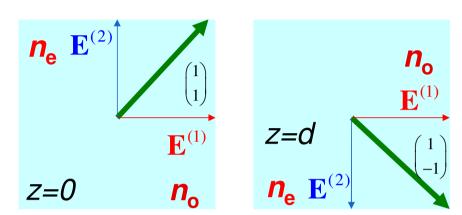
WAVELENGTH RETARDATION PLATES

Example: half-wave plate the wave E_2 is delayed by a phase π

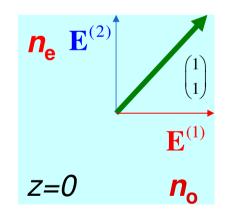


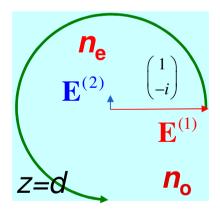
WAVELENGTH RETARDATION PLATES

z=0: linearly polarized at 45° phase delay π mirror polarization plane



seen from the destination





GHENT UNIVERSITY

quarter wave plate E₂ phase delay π/2 left circular polarization *E* counter-clockwise in time (left-handed helix in space)

POLARIZATION STATES OF LIGHT

Liquid Crystals

and Photonics

GHENT UNIVERSITY right-handed circularly polarized light (propagation along z)

$$\mathbf{E} = \operatorname{Re}\left[\left(\mathbf{e}_{x} + i\mathbf{e}_{y}\right)e^{i(\omega t - kz)}\right] \qquad \begin{pmatrix} 1\\ i \end{pmatrix}$$
variation of *E* with position:
right handed helix
vikipedia
vikipedia

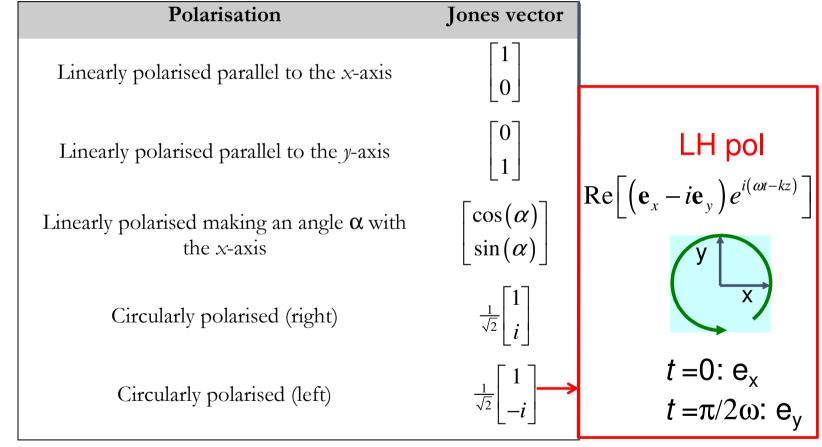
POLARIZATION STATES OF LIGHT (TOOLBOX 2)

Liquid Crystals

and Photonics

GHENT UNIVERSITY

 $\mathbf{E} = \operatorname{Re}\left[\left(J_{x}\mathbf{e}_{x}+J_{y}\mathbf{e}_{y}\right)e^{i(\omega t-kz)}\right]$



DOUBLE REFRACTION

wavelength in two media

λ

distance between two wave fronts along the surface should be equal

λ

Liquid Crystals and Photonics

$$\overline{n_1 \sin \theta_1} = \overline{n_2 \sin \theta_2}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
Law of Snellius
$$\sum_{k=1}^{k} \frac{\lambda}{n_2}$$

$$n_2 \sin \theta_2$$

$$\frac{\omega}{c} n_1 \sin \theta_1 = \frac{\omega}{c} n_2 \sin \theta_2 \longrightarrow k_1 \sin \theta_1 = k_2 \sin \theta_2$$

$$k_{1y} = k_{2y}$$

 k_1

 θ_1

θ

λ

 $n_1 \sin \theta_1$

GHENT UNIVERSITY

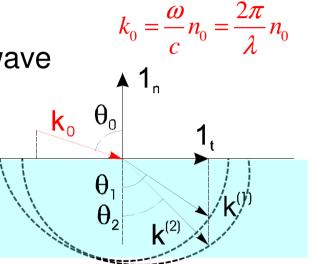
DOUBLE REFRACTION

Light incident from an isotropic medium into an anisotropic medium *k*-vector represents periodicity of a wave

Tangential component *k*_t of all *k*-vectors should be the same Intersection with normal surface?

two solutions: bi-refringence

double refraction



$$n_0 \sin \theta_0 = n^{(1)} \sin \theta_1 = n^{(2)} \sin \theta_2$$

DICHROISM

Linear dichroism

anisotropic absorption

$$\overline{\overline{\varepsilon}}_{r} = \begin{pmatrix} (n_{1} + i n_{1})^{2} & 0 & 0 \\ 0 & (n_{2} + i n_{2})^{2} & 0 \\ 0 & 0 & (n_{3} + i n_{3})^{2} \end{pmatrix}$$

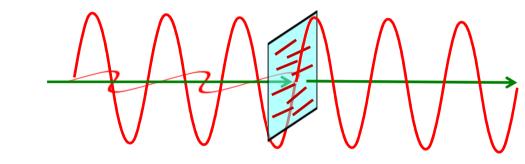
linear polarizer: y polarization is absorbed, x-pol is transmitted

 $\overline{\overline{\varepsilon}}_{r} = \begin{pmatrix} n_{1}'^{2} & 0 & 0 \\ 0 & (n_{2}' + i n_{2}'')^{2} & 0 \\ 0 & 0 & n_{3}'^{2} \end{pmatrix}$

DICHROISM

Polaroid polarizer

oriented absorbing polymer molecules



Wire grid polarizer

parallel metal wires absorb the *E*-field component parallel to the wires

CONDUCTING

WIRE

