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three scales:

microscale: average size of grain d
(microstructure)

mesoscale: L
if not RVE, then 

inhomogeneous continuum

macroscale: Lmacro
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separation of scales d << L << Lmacro

does not always hold!

three scales:

microscale: average size of grain d
(microstructure)

mesoscale: L
if not RVE, then 

inhomogeneous continuum

macroscale: Lmacro
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separation of scales d << L << Lmacro

does not always hold!

three scales:

microscale: average size of grain d
(microstructure, non-fractal)

mesoscale: L
if not RVE, then 

inhomogeneous continuum

macroscale: Lmacro



random checkerboard (chessboard) model
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probabilities of black/white phases
size of space Ω of all (elementary) events ω
probability of each ω

16 phases



Bertrand paradox: 
Consider an equilateral triangle inscribed in a circle. Suppose a chord of 
the circle is chosen at random. 
What is the probability that the chord is longer than a side of the triangle?

6

Three different solutions of Bertrand's problem, showing cords which are too short.

(a) The "random radius" method: ½
(b) The "random endpoints" method: 1/3

(c) The "random midpoint" method: ¼



Bertrand paradox: 
Consider an equilateral triangle inscribed in a circle. Suppose a chord of 
the circle is chosen at random. 
What is the probability that the chord is longer than a side of the triangle?
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The problem's classical solution hinges on the method by which a chord is chosen "at 
random". It turns out that if, and only if, the method of random selection is specified, 
does the problem have a well-defined solution. There is no unique selection method, 
so there cannot be a unique solution. The three solutions presented by Bertrand 
correspond to different selection methods, and in the absence of further information 
there is no reason to prefer one over another.



Bertrand paradox: 
Consider an equilateral triangle inscribed in a circle. Suppose a chord of 
the circle is chosen at random. 
What is the probability that the chord is longer than a side of the triangle?
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this solution is both scale and translation invariant



Basic Random Media Models
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Poisson line field



Basic Random Media Models
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Poisson line field



Basic Random Media Models
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Poisson line field
is not a random fiber field



Basic Random Media Models
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two-phase mosaic generated from a Poisson line field with 100 lines



Basic Random Media Models
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random finite fiber field

“anatomy” of paper



Multiscale Anatomy of Paper
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paper manufacture up to 10 m wide 
at 100 km/h



sequential inhibition process

(100 points)

binomial point process

Poisson point process
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“anatomy” of paper

⇒



sequential inhibition process

(100 points)

binomial point process
(tessellation)

Poisson point process Poisson-Voronoi mosaic
Delaunay triangulation
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⇒ ⇒



(100 points)

(tessellation)
Poisson-Voronoi mosaic
Delaunay triangulation
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in non-Euclidean metricin Euclidean metric d2



(100 points)

(tessellation)
Poisson-Voronoi mosaic
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non-Euclidean metrics

( )
1/

, 1 ,
pn p

p i i
i

d y x p 
= − ≤ ≤ ∞∑ 
 

y x

d∞1d



random crack model
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(a) germ-grain fiber model (… fiber structures)

(b) hard-core Boolean random function (… cellular/biological tissues)

(c) dead leaves random tessellation of Poisson polygons 

(… randomly micro-layered systems)

(d) Boolean model of Poisson polygons 

(… tungsten-carbide [black] and cobalt [white])

Many complex microstructures may be modeled via 
mathematical morphology

(a) (b) (c) (d) 



Boolean model
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Generate a Poisson point field
Place grains at those points

If non-Poisson point field, 
a germ-grain model



Boolean models
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Generate a Poisson point field
Place grains at those points

If non-Poisson point field, 
a germ-grain model



Boolean models
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3-d model of a porous medium: 
percolation of pores
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Gaussian correlated microstructures
• Two-phase isotropic correlated microstructures 

constructed using the Fourier Filtering based 
algorithm proposed by Makse et al. (1996).

Mesoscale = 256 at 50 % volume fraction 
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[Makse, Hernán A., et al. "Method for generating long-range 
correlations for large systems." Physical Review E 53.5 (1996): 5445]



Gaussian correlated microstructures
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Numerically generated microstructures

SEM generated micrographs of  Al2O3/Ni

15% Ni 50% Ni 85% Ni
Aldrich, D. E., Z. Fan, and P. Mummery. "Processing, microstructure, and physical properties of 
interpenetrating Al2O3/Ni composites." Materials science and technology 16.7-8 (2000): 747-
752.



Comparison with experiments*
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*[Aldrich, D. E., Z. Fan, and P. Mummery. "Processing, microstructure, and physical properties of 
interpenetrating Al2O3/Ni composites." Materials Science and Technology 16.7-8 (2000): 747-752]



Gaussian correlated microstructures
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• Gaussian correlation function, 

0 0

( , )x y dxdyλ ρ
∞ ∞

= ∫ ∫• Correlation length is defined as



Functionally Graded Materials (FGM)
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Random medium
B { ( ); }B ω ω= ∈Ω



Functionally graded materials
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Ti TiB
Random medium
B { ( ); }B ω ω= ∈Ω



Functionally graded materials
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Ti TiB Ti TiB
Random medium
B { ( ); }B ω ω= ∈Ω

[A. Saharan et al., “Fractal geometric characterization of functionally graded 
materials,” ASCE J. Nanomech. Micromech., 2013]



Edge Plots
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Fineness: 100



Edge Plots
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Fineness: 100



Edge Plots
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Fineness: 1000

Fineness: 100



Edge Plots
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D ~ 1.7–1.8

Fineness: 1000

Fineness: 100



Functionally graded materials
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Random medium

P(black, white) = {0.5,0.5} 
B { ( ); }B ω ω= ∈Ω
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f (x) = a0 + a1 cos(ωx) + b1 sin(ωx) + a2 cos(2ωx) +
b2 sin(2ωx) + a3 cos(3ωx) + b3 sin(3ωx) +
a4 cos(4ωx) + b4 sin(4ωx) + a5 cos(5ωx) + b5 sin(5ωx)

f (x) = xα −1(1− x)β−1

B(α,β)
C

Curve fit for local fractal dimension D(x)



38

Curve fit for local fractal dimension D(x)

f (x) = a0 + a1 cos(ωx) + b1 sin(ωx) + a2 cos(2ωx) +
b2 sin(2ωx) + a3 cos(3ωx) + b3 sin(3ωx) +
a4 cos(4ωx) + b4 sin(4ωx) + a5 cos(5ωx) + b5 sin(5ωx)

a0 = −3.897e + 06;ω = 0.2666
a1 = 6.525e + 06;b1 = −1833
a2 = −3.781e + 06;b2 = 2098
a3 = 1.451e + 06;b3 = −1182
a4 = −3.331e + 05;b4 = 350.5
a5 = 3.473e + 04;b5 = −43.7
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Curve fit for local fractal dimension 
D(x)

f (x) = xα −1(1− x)β−1

B(α,β)
C B(x, y) = Γ(x)Γ(y)

Γ(x + y)
= t x−1(1− t)y−1 dt

0

1

∫

Γ(z) = t z−1e− t dt
0

∞

∫α = 1.692 ;β = 1.692

C = 0.8129



Interfacial Fractal Dimension

Fineness of 
FGM Interfacial Fractal Dimension

10 1.459328817

50 1.710635642

100 1.757886781

500 1.822756529

1000 1.840748953

5000 1.870978452

10000 1.880705808

15001 1.88573187

19001 1.888491704

System fineness and corresponding 
“interfacial fractal dimension”



Edge Plots
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D~1.88



3d Functionally graded materials (FGM)

42



Future work – Experimental study
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• A preliminary experimental study was 
carried out on FGM samples printed 
using additive manufacturing 
technology.

• The printer reads the sample geometry 
through a ‘STL file format’ 
(STereoLithography).

OBJET Eden 350 3D printer in MEL, UIUC



3D printed FGM samples
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• The blue material on the right is the 
hard material called 
‘VeroBlueFullCure®840’.

• The white material on the left is a soft 
‘gel’ like material called 
‘SupportFullCure®705’.

• These materials are polymers provided 
by OBJET.

• The properties of the white phase have 
not been released by the manufacturer.

• The mean dimensions of the sample 
were:

A 3D printed FGM sample

Property ASTM Value
Young's modulus D-638-04 2740 MPa
Tensile strength D-638-03 55 MPa

Material properties of VeroBlue material



Towards simulations of fractals…

URL: http://davidprice.files.wordpress.com/2013/07/2000px-kochflake.png

Topological 
Dimension

Object

0 Point
1 Line
2 Plane
3 Space



In between?
• Haussdorf dimension/ scaling



Generating Different 
Dimensions



Curve F:
D≈1.051

Curve G:
D≈1.293



What is the length of coast of Britain?
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What is the length of coast of Britain?
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What is the length of coast of Britain?
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What is the length of coast of Britain?

measured length L(G) of border is a function of measurement scale G: 
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1( ) DL G MG −=
0

log ( )lim 1logl

N lD

l
→

=log ( )
1log

N lD

l

=⇒ ⇒



What is the length of coast of Britain?

measured length L(G) of border is a function of measurement scale G: 
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1( ) DL G MG −=
0

log ( )lim 1logl

N lD

l
→

=log ( )
1log

N lD

l

=⇒ ⇒



What is the length of coast of Britain?

measured length L(G) of border is a function of measurement scale G: 
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1( ) DL G MG −=
0

log ( )lim 1logl

N lD

l
→

=log ( )
1log

N lD

l

=⇒ ⇒



What is the length of coast of Britain?

measured length L(G) of border is a function of measurement scale G: 
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1( ) DL G MG −=
0

log ( )lim 1logl

N lD

l
→

=log ( )
1log

N lD

l

=⇒ ⇒
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original image from Cassini mission
image processed to capture ring edges

D = 1.66
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⇒



original image from Cassini mission
image processed to capture ring edges

D = 1.71
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⇒



original image from Voyager mission
image processed to capture ring edges

D = 1.77

68

⇒

[Arxiv, 1012; SpringerPlus, 2015]
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Fractal dimension

71

• Fractal dimension can be non-integer

• Fractal dimension represents the topological space-filling 
capacity of a geometric pattern

• Fractal dimension characterizes size scaling in detail:

number of covering boxes,     box size

D
rN r−∝

:rN :r



Fractal dimension: Koch snowflake
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log( ) log(4) 1.2618...
log( ) log(3)

rND
r

= − = =

1 , 4
3 rr N= =



Mathematical fractal: Koch snowflake

Formation: simple iteration

Feature: infinite perimeter 

73



74



Definition: A fractal is "a rough or fragmented geometric shape that can 
be split into parts, each of which is (at least approximately … statistically) 
a reduced-size copy of the whole," a property called self-similarity. 
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Definition: A fractal is "a rough or fragmented geometric shape that can 
be split into parts, each of which is (at least approximately … statistically) 
a reduced-size copy of the whole," a property called self-similarity. 

H.-O. Peitgen (2010): “if we talk about impact inside mathematics, and 
applications in the sciences, Benoît B. Mandelbrot is one of the most 
important figures of the last 50 years.”
…was often criticized for not being rigorous

Typical features of fractals:

• fine structure at arbitrarily small scales
• too irregular to be easily described by traditional Euclidean geometry
• self-similar (at least approximately or stochastically) (but not R1)
• has a fractal/Hausdorff dimension which is greater than its topological 

dimension (not space-filling objects in 3d)
• has a simple and recursive definition

76



Defects in Materials

Dimension (d) Defect

0 Point defect
• Interstitial
• Substitutional
• Vacancy

1 Line defect
• Dislocation

2 Plane defect
• Twin planes (twinning)

3 Three dimensional defect



Grain Boundary

• Grain 
boundary
in Al7050
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Elements of Random Processes and Fields 

Martin Ostoja-Starzewski
Department of Mechanical Science & Engineering

and Institute for Condensed Matter Theory and Beckman Institute
University of Illinois at Urbana-Champaign

[Math. Mech. Complex Syst. (MEMOCS), 2014]
[Math. Mech. Solids, 2015]
[ZAMP, 2016]
[J. Elasticity, 2017]
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complete specification of a random field is given in 
terms of all n-point probability distributions: 

…strict-sense stationary (SSS) if all n-order distributions 
are invariant with respect to arbitrary shifts: 
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Properties of ( )ρ x
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Scalar RF, wide-sense stationary

1 1( ) , ( ) ( ) ( )iT T T Rµ〈 〉 = 〈 + 〉 = < ∞x x x x x

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]R T T T T= 〈 − − 〉x x x x x x

( ) ( ) (x)ρ ρ ρ= =x x

( )( )
( )

R
R

ρ =
xx
0

1 2 1 2( ) ( ), ( ) ( ) ( )T T T Rµ〈 〉 = 〈 〉 = < ∞x x x x x ,x
Describe scalar RF in terms of mean and correlation

Work in terms 
of covariance:

Scalar RF wide-sense stationary, isotropic



Spectral density = Fourier transform of ρ(x):
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Basic models:

exp[ ]( ) , , 0, 0 , 2
1

Axx A B
Bx

α

αρ α β−
= > < ≤

+

1

( ) exp[ ], 0, 0 2, 1,...,s

r

s s
s

x Ax A s rαρ α
=

= − > < ≤ =∑

1

( ) [ (1 ) ], 0, 0 2, 1,2,...s

r

s s s s s
s

x B x l B lβρ β
=

= − + > < ≤ =∏

( ) exp[ ](cosh ) , (2 ) 0, 0 2, 1,...,sx Ax Bx A B l s s rα αρ α= − + − > < ≤ =

(cosh )( ) , (2 ) 0, 0 2, 1,...,
1

sBxx A B l s s r
Ax

α

αρ α= + − > < ≤ =
+

1( ) [1 ] , 0, 0 2x Ax Aαρ α−= + > < ≤

( ) exp[ ], 0, 0 2x Ax Aαρ α= − > < ≤

… they do not separate local from long-range effects



RFs with exponential or Gaussian correlation functions

( ) exp[ ], 0, 0 2C x Ax Aα α= − > < ≤
7



RFs with fractal + Hurst effects 
Cauchy Dagum

( ) /
( ; , ) : 1 1 ,

ε δδδ ε
−−= − +C r r( ) /

( ; , ) : 1 ,
η θθθ η
−

= +C r r

0 2δ< ≤
8
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Can grasp fractals and Hurst effect

roughness
heavy-tail behavior of covariance function

A random process Zx is statistically self-similar if it obeys
for some constant c, where H is known as the Hurst parameter

• Crudely: when stretched by some factor c in x dimension, Z
looks the same if stretched by c-H in the Z dimension

• Most time series Zt look “flat” if stretched like this

H
x cxZ c Z−=
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fractals: those enchanting, self-similar things

Hurst effect: long-term memory

0 < H < 0.5: time series with negative autocorrelation (e.g. a decrease 
between values will likely be followed by an increase)

0.5 < H < 1: time series with positive autocorrelation (an increase 
between values followed by another increase)

H = 0.5: true random walk, where there is no preference for a 
decrease or increase following any particular value.
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Local averaging is inconsistent with constitutive laws in 2d or 3d!

1( , ) : ( , )
L

L Ld D
Z Z d

L
ω ω ′ ′= ∫x x x

Because mechanics involves boundary value problems

Can apply local averaging to constitutive laws in 2d or 3d?
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Local averaging is inconsistent with constitutive laws in 2D or 3D

1( , ) ( , )
L

L Ld D
Z Z d

L
ω ω ′ ′= ∫x x x
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• For tensor-type properties of materials, 
need RFs with all kinds of anisotropies

• TRFs are needed as inputs into stochastic partial differential 
equations (SPDEs) and stochastic finite elements (SFEs)

• …same arguments apply to elasticity

( )( ) 3, 0,   ,   u Rω ω⋅ ⋅ = ∈ ∈ΩC x x∇ ∇

( )( ) 3C , 0,   ,   u Rω ω⋅ = ∈ ∈Ωx x∇ ∇

     
( ) ( ) ( )( )2 Tµ λ µ µ λ ρ∇ + + ⋅ + + + ⋅ =u u u u u u∇ ∇ ∇ ∇ ∇ ∇ ∇

are these equations physically realistic?
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Continuum tensor random field (RF) ),('),( xCCxC ωω +=

Can it be assumed isotropic (E,v ) and 
smooth? No

Can assume a unique tensor RF without 
reference to spatial resolution? No

Can do local averaging of tensor RF for input 
to stochastic finite elements (SFE)? No

Can assume correlation functions of tensor 
RF w/o reference to micromechanics? No
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Continuum tensor random field (RF) ),('),( xCCxC ωω +=

Can it be assumed isotropic (E,v ) and 
smooth? No

Can assume a unique tensor RF without 
reference to spatial resolution? No

Can do local averaging of tensor RF for input 
to stochastic finite elements (SFE)? No

Can assume correlation functions of tensor 
RF w/o reference to micromechanics? No

[“Stochastic finite elements: Where is the physics?” Theor. & Appl. Mech., 2011]



Focus on locally anisotropic, and statistically isotropic TRFs
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Two kinds of isotropy of 
tensor random fields (TRFs):

• local

• statistical 

ij ijC Cδ=
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Restrictions on TRFs

• dependent quantities (displacement, velocity, deformation, rotation, stress, ...) 
dictated by continuum balance laws and kinematics

[von Kármán 1938; Robertson, 1940; Batchelor 1953; Yaglom, 1957; Lomakin, 1964; 
Shermergor, 1970; Procaccia, 1999, …]

• constitutive responses (conductivity, stiffness, permeability,...)
positive-definite and dictated by microphysics, micromechanics

[O-S, 1989… ; Soize & Guilleminot, 2004, …, Malyarenko & O-S, 2014]

Representations of statistically isotropic TRFs are needed
• use theory of invariants, group theory, probability theory



• second-order TRF:

• mean-square continuous TRF:

• wide-sense homogeneous TRF:

18

2 3( ) || , .R< ∞ ∈|| T x x

: D VΩ× →T

( , ) ( ) ( )R = ⊗x y T x T y

3( , ) ( ), , .R R R= − ∀ ∈x y x y x y

Tensor Random Fields (TRF)

0
2 3

0 0lim ( ) ( ) || 0, .R→ − = ∀ ∈x x || T x T x x



• 1st-rank (vector) statistically (wide-sense) isotropic TRF:

for any rotation

19

1

( ) ( )
( , ) ( , )

E k kE
R k k kR k −

=
=

x x
x y x y

( , ) : ( ) ( ) ( ) ( )R k k k k k k= − ⊗ −      x y T x T x T y T y

( ) : ( )E k k=x T x

2 2 2( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( )E k k k k k k E= = = =x T x T x T x x

2 2

( , ) : ( ) ( ) ( ) ( )

( ) ( ) ( , )

R k k k k k k

k k R

= − ⊗ −      

 = ⊗ 

x y T x T x T y T y

x y

2

1

( ) ( ) ( )
( , ) ( ) ( , ) ( )
E k k k

R k k k B kγ γ −

= =
=

x T x
x y x y

• 2nd-rank statistically (wide-sense) isotropic TRF:

for any rotation

γ is orthogonal representation of k

symmetric tensor square of k



Tensor Random Fields (TRF) in 3d

• 0th-rank (scalar): …

• 1st-rank:

• 2nd-rank:

• 3rd-rank:

• 4th-rank: 20

( )
5 ( )

1
( ) ( ) ( ) ( )klkl

ij ij kl ijR T T S x J α
α

α=
= = ∑x 0 x x

( )
21 ( )

1
( ) ( ) ( ) ( )prs prs

ijk prsijk ijkR T T S x J α
α

α=
= = ∑x 0 x x

( ) ( )
2 ( )

1 2
1

( ) ( ) ( ) ( )j j
i j ij i ji iR T T S J S x S x x xα

α
α

δ
=

= = = +∑x 0 x x

( )
29 ( )

1
( ) ( ) ( ) ( )prst prst

ijkl prstijkl ijklR T T S x J α
α

α=
= = ∑x 0 x x

exp[ ]( ) , , 0, 0 , 2
1

AxR x A B
Bx

α

α α β−
= > < ≤

+

1

( ) exp[ ], 0, 0 2, 1,...,s

r

s s
s

R x Ax A s rα α
=

= − > < ≤ =∑

(1) (2)

(4) (5)

(3)

,      

,     

kl kl
ij kl ik jl il jkij ij

kl kl
i j kl k l ij i j k lij ij

kl
j k il i l jk i k jl j l ikij

J J

J x x x x J x x x x

J x x x x x x x x

δ δ δ δ δ δ

δ δ

δ δ δ δ

= = +

= + =

= + + +

in all elasticity classes 
• tetragonal
• trigonal
• triclinic
• …

piezoelectricity



Tensor Random Fields (TRF) in 2d (planar)

• 0th-rank (scalar): …

• 1st-rank:

• 2nd-rank:

21

( ) ( )

1,2,4,5
( ) ( ) ( ) ( )klkl

ij ij kl ijR T T S x J α
α

α=
= = ∑x 0 x x

( ) ( )
2 ( )

1 2
1

( ) ( ) ( ) ( )j j
i j ij i ji iR T T S J S x S x x xα

α
α

δ
=

= = = +∑x 0 x x

exp[ ]( ) , , 0, 0 , 2
1

AxR x A B
Bx

α

α α β−
= > < ≤

+

1

( ) exp[ ], 0, 0 2, 1,...,s

r

s s
s

R x Ax A s rα α
=

= − > < ≤ =∑

(1) (2)

(4) (5)

(3)

,      

,     

kl kl
ij kl ik jl il jkij ij

kl kl
i j kl k l ij i j k lij ij

kl
j k il i l jk i k jl j l ikij

J J

J x x x x J x x x x

J x x x x x x x x

δ δ δ δ δ δ

δ δ

δ δ δ δ

= = +

= + =

= + + +

Malyarenko & Ostoja-Starzewski, “Statistically isotropic tensor random fields: Correlation 
structures,” Math. Mech. Complex Sys. (MEMOCS), 2014.

Malyarenko & Ostoja-Starzewski, “Spectral expansions of homogeneous and isotropic 
tensor-valued random fields,” ZAMP, 2016. 

Malyarenko and M. Ostoja-Starzewski, “A random field formulation of Hooke's law in all 
elasticity classes,” J. Elast., 2017.



3d turbulence of 
incompressible fluid

22

( ) : ( ) ( ) ,    1,2j
i jiR u u i= =x 0 x

, ( ) 0i iu =x

, ( ) 0j
i iR =x

( ) ( ) ( )j
i j ijiR A x x x B x δ= +x

4 / 0A x A B x′ ′+ + =

g f xf ′= +

Introduce longitudinal and lateral correlation functions:
2 2 2( ) ( ) ( )     ( ) ( )x A x B x f x B x g xσ σ+ = = ⇒

⇒ ⇒

/ 2g f xf ′= +
(Batchelor, 1953)

Correlation of planar flux TRF:

Representation: 

Balance:



2d conductivity heat flow
(or 2d incompressible turbulence)

23

( ) : ( ) ( ) ,    1,2j
i jiR q q i= =x 0 x

, ( ) 0i iq =x

, ( ) 0j
i iR =x

( ) ( ) ( )j
i j ijiR A x x x B x δ= +x

3 / 0A x A B x′ ′+ + =

Correlation of planar flux TRF:

Representation: 

Balance:

g f xf ′= +

Introduce longitudinal and lateral correlation functions:
2 2 2( ) ( ) ( )     ( ) ( )x A x B x f x B x g xσ σ+ = = ⇒

⇒ ⇒

g f xf ′= +



Anti-plane elasticity

24

( ) ( ) ( )j
ij i jiE D x C x x xδ= +x

2i ij jKσ ε=

Correlation of strain TRF:

Representation: 

Strain-displacement relation:

Correlation of displacement TRF:

( ) : ( ) ( )j
i jiE ε ε=x 0 x

,i iuε =

21( )
4

j
i

i j

UE
x x
∂

= −
∂ ∂

x

( ) : ( ) ( )U u u=x 0 x

/C D x′=

⇒

⇒



3d random stress field

25

Correlation of stress TRF:

Representation: 

Balance:

First, must choose    2 3, SS⇒

⇒

( ) : ( ) ( ) ,    , , , 1,2kl
ij ij klR i j k lσ σ= =x 0 x

5 ( )

1
( ) ( )klkl

ij ijR S J α
α

α=
= ∑x x

     
1 2

5 2 3

4 3 2

8 ( 2)( 4)
4 ( 2) 2    

8 8( 1) ( 2)

S R R S
dS R S S R r
dr

S R S R R S

= + +
= + − ≡

= + − +

⇒ , ( ) 0kl
ij iR =x

(1) (2)

(3) (5)

(4)

,      

,     

kl kl
ij kl ik jl il jkij ij

kl kl
i j kl k l ij i j k lij ij

kl
j k il i l jk i k jl j l ikij

J J

J n n n n J n n n n

J n n n n n n n n

δ δ δ δ δ δ

δ δ

δ δ δ δ

= = +

= + =

= + + +



3d random stress field
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Correlation of stress TRF:

Representation: 

Balance:

First, must choose    2 3, SS⇒

⇒

( ) : ( ) ( ) ,    , , , 1,2kl
ij ij klR i j k lσ σ= =x 0 x

5 ( )

1
( ) ( )klkl

ij ijR S J α
α

α=
= ∑x x

     
1 2

5 2 3

4 3 2

8 ( 2)( 4)
4 ( 2) 2    

8 8( 1) ( 2)

S R R S
dS R S S R r
dr

S R S R R S

= + +
= + − ≡

= + − +

⇒ , ( ) 0kl
ij iR =x

(1) (2)

(3) (5)

(4)

,      

,     

kl kl
ij kl ik jl il jkij ij

kl kl
i j kl k l ij i j k lij ij

kl
j k il i l jk i k jl j l ikij

J J

J n n n n J n n n n

J n n n n n n n n

δ δ δ δ δ δ

δ δ

δ δ δ δ

= = +

= + =

= + + +
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Define rotation tensor

If homogeneous and isotropic,

or

'
33 33 11

2
11 33

2( ) 0
1 ( )
2

r
d r

r dr

Ω + Ω −Ω =

Ω = Ω

⇒

1: curl 2 uω =

1 2 1 2( , ) : ( ) ( )ij i jω ωΩ = 〈 〉r r r r

11 33 11( )ij ij i jr rδΩ = Ω + Ω −Ω

⇒
⇒ 1 curl 4 UΩ = div 0Ω =

formally analogous to von Kármán equations

1 2ij ij i jr rδΩ = Ω +Ω
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Define curvature tensor

Can estimate RF of grain bending in inhomogeneous medium 
under homogeneous macro-deformation

⇒

,:ij i jγ ω=

1 2 1 2( , ) : ( ) ( )ijkl ij klγ γΓ = 〈 〉r r r r⇒
⇒ 1 2 ,( , )ijkl ik jl ikjlΓ = −Ω ≡ Θr r

ikjl kijl iklj jlikΘ = Θ = Θ ≠ Θ

micropolar-type

13 12 31 11 12

33 11 12 44 11 12

( 1)      / 2 2
( 1)( )     2 ( 1)
R R
R R R

Θ = − Θ Θ = Θ = Θ

Θ = − Θ −Θ Θ = − Θ −Θ

⇒ first choose 11 12,  Θ Θ

⇒



Micropolar continuum
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5 equations for 13 unknown functions
of quasi-static TRFs

⇒

     

kinematics
8 relations for 18 unknown coefficients in 3 correlation functions 
of displacement, rotation, and torsion-curvature TRFs

⇒
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OBSERVE

• For tensor random fields (TRFs) we determined explicit 
correlation functions (and their spectral forms) 

• For dependent fields, restrictions are imposed by the 
governing equations

• For property fields (conductivity, elasticity…) determined 
correlation functions for all kinds of anisotropies

• such TRFs are needed as inputs into stochastic BVPs [partial 
differential equations (SPDEs)]

• Random fields of properties are functions of microstructure + 
mesoscale

• Can go to: micropolar models, coupled field phenomena, 
inelastic properties,…
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Random fields of 
constitutive responses 
from micromechanics

in 2D elasticity

1111
1111 ( )ρ ∆x

1212
1111 ( )ρ ∆x

2212
1111 ( )ρ ∆x

2222
1111 ( )ρ ∆x

1122
1111 ( )ρ ∆x

1211
1111 ( )ρ ∆x

mesoscale = 10

ijklC
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1.
auto-correlations of diagonals: ,…

2.
cross-correlations of diagonals: ,…

3.
auto-correlations of off-diagonals: ,…

4.
cross-correlations of off-diagonals: ,…

5.
cross-correlations of diagonal with off-diagonal terms: ,…
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correlation function:

… for homogeneous random media:

⇒

ijklCTensor RFs of in elasticity

1 2x = x - x

rotation of system    into     has to be 
accompanied by a simultaneous rotation [SO(3)]
of into as well as a rotation 
of into 

x̂x

1( )ijklC x 1
ˆ ˆ( )abcdC x

2
ˆ ˆ( )efghC x2( )prstC x

1ˆ( ) ( ) ( )efgh prst prst
ai bj ck dl pe rf gs ht ai bj ck dl pe rf gs htabcd ijkl ijklR c c c c c c c c R c c c c c c c c R c−= =x x x

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]prst
ijkl ijkl prst prstijklR C C C C= 〈 − − 〉x x x x x x

1 2( , ) ( )prst prst
ijkl ijklR R=x x x



Tensor Random Fields (TRF)

• locally isotropic TRF:
1st-rank
2nd-rank
4th-rank

34

( ) 42 sλ µ= +T 1 1 1⊗

( ) ( )
4

4 4 4 4 4

,     1 ,     

, / 2, / 2

ij kl ijkl ik jl il jk
s a s a

δ δ δ δ δ δ⇔ = ⊗ ⇔ = ⊗ ⇔

= + = ⊗ ⊗ = ⊗ ⊗

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

⊗

+ −

T=T 1
=T 0

( ) 42 s
ijklC λ µ= +1 1 1⊗

ijC C= 1



Tensor Random Fields (TRF)

• locally isotropic TRF:
1st-rank
2nd-rank
4th-rank

• statistically (wide-sense) isotropic TRF:
0th-rank (scalar)
1st-rank
2nd-rank
4th-rank
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( ) 42 sλ µ= +T 1 1 1⊗
T=T 1

=T 0

( ) ( )
4

4 4 4 4 4

,     1 ,     

, / 2, / 2

ij kl ijkl ik jl il jk
s a s a

δ δ δ δ δ δ⇔ = ⊗ ⇔ = ⊗ ⇔

= + = ⊗ ⊗ = ⊗ ⊗

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

⊗

+ −



• 0th-rank (scalar) statistically (wide-sense) isotropic TRF:

for any rotation :
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( ) : ( )E k T k=x x

( , ) : ( ) ( ) ( ) ( )B k k T k T k T k T k= − −      x y x x y y
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Basic models:

exp[ ]( ) , , 0, 0 , 2
1

Axx A B
Bx

α

αρ α β−
= > < ≤

+

1

( ) exp[ ], 0, 0 2, 1,...,s

r

s s
s

x Ax A s rαρ α
=

= − > < ≤ =∑

1

( ) [ (1 ) ], 0, 0 2, 1,2,...s

r

s s s s s
s

x B x l B lβρ β
=

= − + > < ≤ =∏

( ) exp[ ](cosh ) , (2 ) 0, 0 2, 1,...,sx Ax Bx A B l s s rα αρ α= − + − > < ≤ =

(cosh )( ) , (2 ) 0, 0 2, 1,...,
1

sBxx A B l s s r
Ax

α

αρ α= + − > < ≤ =
+

1( ) [1 ] , 0, 0 2x Ax Aαρ α−= + > < ≤

( ) exp[ ], 0, 0 2x Ax Aαρ α= − > < ≤



• 2nd-rank statistically (wide-sense) isotropic TRF:

for any rotation :
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2 2 2( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( )E k k k k k k E= = = =x T x T x T x x

2 2

( , ) : ( ) ( ) ( ) ( )

( ) ( ) ( , )

B k k k k k k

k k B

= − ⊗ −      

 = ⊗ 

x y T x T x T y T y

x y



• 4th-rank statistically (wide-sense) isotropic TRF:

for any rotation :

39
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Physical meaning of Ki functions for 2nd rank TRF

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1 2 1 2 4 6

5 6

3 4

1 2 3 5

( , ) ( ) ( )

2 4 ,

δ δ δ δ δ δ

δ δ δ δ

δ δ

 = 〈 〉 = + + 
 + − + + +    

 + − +    
+ + − −  

x x x xkl
ij ij kl ij kl ik jl il jk

j k il i l jk i k jl j l ik

i j kl k l ij

i j k l

B T T K x K x

K x K x n n n n n n n n

K x K x n n n n

K x K x K x K x n n n n

11 12 13

22 23

33

 
 
 
  

T T T
T T

T



elasticity
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Covariance of strain TRF:

Representation: 

Strain-displacement relation:

Covariance of displacement TRF:

0 0
1 1( ) : ( ) ( )kl

ij ij klE ε ε=r r r r+

5 ( )

1
( )α

α
α=

= ∑ rklkl
ij ijE M J

     
( ) ( )1 2( )ij i j ijU K r r r K r δ= +r

     

First, must choose    1 4, M M⇒



damage tensors

Field of damage described by TRF:

Covariance:

Representation: 

Damage geometry described by:

Covariance:

Representation: 

5 ( )

1
( )klkl

ij ijM J α
α

α=
Φ = ∑ r

42

0 0
1 1( ) : ( ) ( )kl

ij ij klϕ ϕΦ =r r r r+
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OBSERVE

• Need to distinguish between local isotropy of 
continuum fields and statistical isotropy

• For tensor-type properties of materials, need TRFs 
that are (i) positive-definite and (ii) consistent 
with micromechanics [as functions of 
microstructure + mesoscale + Hill-Mandel 
condition]

• Counterintuitive results

• For dependent tensor fields, covariances are 
subject to restrictions dictated by field equations

• Once covariance functions are set up, one can 
simulate realizations of TRFs

• Applications: 
- cross-correlations of fields, 
- classical or micropolar continua,
- set up stochastic finite element models, …



3d conductivity
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0 0
1 1( ) : ( ) ( ) ,    1,2j

i jiS q q i= =r r r r+

, ( ) 0=ri iq

     
( ) ( ) ( )j

i j ijiS A r r r B r δ= +r

( ) 4 ( ) / 0′ ′+ + =A r r A r B r

,= −i ij jq C T

Covariance of heat flux TRF:

Representation: 

Equilibrium:

/ 2′= +g f rf

Introduce longitudinal and lateral correlation functions:
2 2 2( ) ( ) ( )     ( ) ( )σ σ+ = =r A r B r f r B r g r

⇒

⇒

⇒



3d conductivity
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( ) ( ) ( )j
i j ijiE C r r r D r δ= +r

Covariance of temperature gradient TRF:

Representation: 

0 0
1 1( ) : , ( ) , ( )j

i jiE T T=r r r r+

/′=C D r⇒

0, ( ) : , ( ) , ( )i i iT T T= −r r r
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Vector RF
wide-sense stationary

1 1( ) , ( ) ( ) ( )i i i j ijZ Z Z Rµ〈 〉 = 〈 + 〉 = < ∞x x x x x

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]ij i i j jR Z Z Z Z= 〈 − − 〉x x x x x x

1 2
1 2

1 2

( , )
( , )

( ) ( )
ij

ij
i j

R
ρ

σ σ
=

x x
x x

x x

1 2 1 2( , ) ( )ij ijρ ρ= −x x x x
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correlation function:

… for homogeneous turbulence: 1 2( , ) ( )j j
i iR R=x x x

⇒

iZVector RF:

1ˆ( ) ( ) ( )j jb
a ai bj ai bji iR c c R c c R c−= =x x x

1 2x = x - x

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]j
i i j jiR Z Z Z Z= 〈 − − 〉x x x x x x
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correlation function:

… for homogeneous turbulence: 1 2( , ) ( )j j
i iR R=x x x

⇒

iZVector RF:

1ˆ( ) ( ) ( )j jb
a ai bj ai bji iR c c R c c R c−= =x x x

1 2x = x - x

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]j
i i j jiR Z Z Z Z= 〈 − − 〉x x x x x x

rotation of system    into    [subject to SO(3)] has 
to be accompanied by a simultaneous rotation of    

into              as well as 
a rotation of into 

x̂x

1( )iZ x 1ˆ ˆ( )aZ x

2ˆ ˆ( )bZ x2( )jZ x
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1 2 1 2( , ) ( ) ( )kl
ij ij klC C C= 〈 〉x x x x2nd rank tensor RF

(e.g. anti-plane elasticity)

Stationary RF:

Isotropic RF:

(five functions Ki)

∀x

1 2x = x - x

( )ijC const=x

1 2( , ) ( )kl kl
ij ijR R=x x x

∀x x = x( )ij ijC Cδ=x

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

4 6

5 6

3 4

1 2 3 5

( )

2 4 ,

kl
ij ij kl ik jl il jk

j k il i l jk i k jl j l ik

i j kl k l ij

i j k l

R x K x K x

K x K x n n n n n n n n

K x K x n n n n

K x K x K x K x n n n n

δ δ δ δ δ δ

δ δ δ δ

δ δ

 = + + 
 + − + + +    

 + − +    
+ + − −  

4 6 22 0K K K+ − =
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correlation function:

… for homogeneous random media: 1 2( , ) ( )prst prst
ijkl ijklR R=x x x

⇒

ijklCTensor RFs of in elasticity

1ˆ( ) ( ) ( )efgh prst prst
ai bj ck dl pe rf gs ht ai bj ck dl pe rf gs htabcd ijkl ijklR c c c c c c c c R c c c c c c c c R c−= =x x x

1 2x = x - x

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]prst
ijkl ijkl prst prstijklR C C C C= 〈 − − 〉x x x x x x
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correlation function:

… for homogeneous random media:

⇒

ijklCTensor RFs of in elasticity

1 2x = x - x

x̂x

1ˆ ˆ( )abcdC x
2ˆ ˆ( )efghC x2( )prstC x

1ˆ( ) ( ) ( )efgh prst prst
ai bj ck dl pe rf gs ht ai bj ck dl pe rf gs htabcd ijkl ijklR c c c c c c c c R c c c c c c c c R c−= =x x x

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]prst
ijkl ijkl prst prstijklR C C C C= 〈 − − 〉x x x x x x

1 2( , ) ( )prst prst
ijkl ijklR R=x x x

rotation of system    into     has to be 
accompanied by a simultaneous rotation [SO(3)]
of into as well as a rotation 
of into 
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correlation function:

… for homogeneous random media:

⇒

ijklCTensor RFs of in elasticity

1 2x = x - x

rotation of system    into     has to be 
accompanied by a simultaneous rotation [SO(3)]
of into as well as a rotation 
of into 

x̂x

1ˆ ˆ( )abcdC x
2ˆ ˆ( )efghC x2( )prstC x

1ˆ( ) ( ) ( )efgh prst prst
ai bj ck dl pe rf gs ht ai bj ck dl pe rf gs htabcd ijkl ijklR c c c c c c c c R c c c c c c c c R c−= =x x x

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]prst
ijkl ijkl prst prstijklR C C C C= 〈 − − 〉x x x x x x

1 2( , ) ( )prst prst
ijkl ijklR R=x x x
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correlation function:

… for homogeneous random media:

⇒

ijklCTensor RFs of in elasticity

1 2x = x - x

rotation of system    into     has to be 
accompanied by a simultaneous rotation [SO(3)]
of into as well as a rotation 
of into 

x̂x

1ˆ ˆ( )abcdC x
2ˆ ˆ( )efghC x2( )prstC x

1ˆ( ) ( ) ( )efgh prst prst
ai bj ck dl pe rf gs ht ai bj ck dl pe rf gs htabcd ijkl ijklR c c c c c c c c R c c c c c c c c R c−= =x x x

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]prst
ijkl ijkl prst prstijklR C C C C= 〈 − − 〉x x x x x x

1 2( , ) ( )prst prst
ijkl ijklR R=x x x
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1. With the exception of cross-correlations made with the (1112) and (2212) 
components, in white-noise checkerboards, correlations generally 
• appear to be linear at low contrast α for all volume fractions vf
• appear to become nonlinear at high α at low vf, yet to become increasingly 

linear as vf increases

2. In general, cross-correlations made with the (1112) and (2212) components are 
nearly zero for every α and vf; however, auto- and cross-correlations between the 
(1112) and (2212) components are highly nonlinear for every α and vf

3. All correlations approach 0 as ξ → L (as windows cease to overlap)

4. In general, the strength of the correlations appears to become weaker with 
increasing α for all vf

5. Correlation surfaces and their contours match those of the anti-plane case:
• mismatch in strength along the x and x axes, suggesting an elliptical 

correlation structure; 
• auto- and cross-correlations made with the (1112) and (2212) components 

appear to have an isotropic correlation structure 



RFs with exponential or Gaussian correlation functions

( ) exp[ ], 0, 0 2C x Ax Aα α= − > < ≤
55



RFs with fractal + Hurst effects 

Cauchy Dagum
56
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three scales:

microscale: 

mesoscale: 

macroscale: 
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three scales:

microscale: average size of grain d
(microstructure)

mesoscale: L 
representative volume element (RVE)
statistical volume element (SVE)

macroscale: Lmacro
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separation of scales d << L << Lmacro
does not generally hold!

even without fractals

three scales:

microscale: average size of grain d
(microstructure)

mesoscale: L 
representative volume element (RVE)
statistical volume element (SVE)

macroscale: Lmacro
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Random fields of displacement, strain, stress, rotation, curvature…
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1 2 1 2( , ) ( ) ( )ijkl ij klS σ σ= 〈 〉x x x xStress RF:

Stationary isotropic stress RF:

1 2

3 5

4

     

     

/

ijkl ij kl ijkl ik jl il jk

ijkl i j kl k l ij ijkl i j k l

ijkl j k il i l jk i k jl j l ik

i i

J J

J n n n n J n n n n

J n n n n n n n n

x n x

δ δ δ δ δ δ

δ δ

δ δ δ δ

= = +

= + =

= + + +

=

( )( )ijkl ijklS x S x Jαα
α

= ∑
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Stress RF:

Stationary isotropic stress RF:

Strain RF:

Stationary isotropic strain RF:

1 2

3 5

4

     

     

/

ijkl ij kl ijkl ik jl il jk

ijkl i j kl k l ij ijkl i j k l

ijkl j k il i l jk i k jl j l ik

i i

J J

J n n n n J n n n n

J n n n n n n n n

x n x

δ δ δ δ δ δ

δ δ

δ δ δ δ

= = +

= + =

= + + +

=

1 2 1 1 2 2( , ) [ ( ) ( ) ][ ( ) ( ) ]ijkl ij ij kl klE ε ε ε ε= 〈 − − 〉x x x x x x

( )( )kl
ij ijklx E x Jαα

α
ρ = ∑

( )( )ijkl ijklS x S x Jαα
α

= ∑

1 2 1 2( , ) ( ) ( )ijkl ij klS σ σ= 〈 〉x x x x
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Every 2nd rank tensor field T can be decomposed into potential 
and birotational fields (1) (2) (1) (2), curl 0, div 0T T T T T= + = =

(1) (2)grad , curl , div 0T Tφ= = Φ Φ =such that

vector potential tensor potential
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Every 2nd rank tensor field T can be decomposed into potential 
and birotational fields (1) (2) (1) (2), curl 0, div 0T T T T T= + = =

(1) (2)grad , curl , div 0T Tφ= = Φ Φ =such that

Given that and ,
is a potential field

is birotational in the absence of body forces

vector potential tensor potential

( , )ij i juε = , 0ij jσ =
ijε

ijσ

⇒
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Without loss of generality, and , in matrix notation1 2 0n n= = 3n n=

1 2 3
12 66 13 12

4 5
44 66 11 33 13 44

( )

( ) ( 2 4 )
ijkl ijkl ijkl ijkl

ijkl ijkl

S S J S J S S J

S S J S S S S J

= + + −

+ − + + − −

Since , only 5 out of 6 components of the stress 
correlation tensor are algebraically independent

66 11 12( ) / 2S S S= −
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Without loss of generality, and , in matrix notation

birotational property

1 2 0n n= = 3n n=

1 2 3
12 66 13 12

4 5
44 66 11 33 13 44

( )

( ) ( 2 4 )
ijkl ijkl ijkl ijkl

ijkl ijkl

S S J S J S S J

S S J S S S S J

= + + −

+ − + + − −

Since , only 5 out of 6 components of the stress 
correlation tensor are algebraically independent

66 11 12( ) / 2S S S= −

, 0ijkl jS = '
13 13 44 12 66
'
33 33 13 44
'
44 44 13 12 66

2( ) 0
2( 2 ) 0
3 3 0

rS S S S S
rS S S S
rS S S S S

+ + − − =

+ − − =

+ + − − =

⇒⇒
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Without loss of generality, and , in matrix notation

birotational property

1 2 0n n= = 3n n=

1 2 3
12 66 13 12

4 5
44 66 11 33 13 44

( )

( ) ( 2 4 )
ijkl ijkl ijkl ijkl

ijkl ijkl

S S J S J S S J

S S J S S S S J

= + + −

+ − + + − −

Since , only 5 out of 6 components of the stress 
correlation tensor are algebraically independent

66 11 12( ) / 2S S S= −

, 0ijkl jS =

⇒

'
13 13 44 12 66
'
33 33 13 44
'
44 44 13 12 66

2( ) 0
2( 2 ) 0
3 3 0

rS S S S S
rS S S S
rS S S S S

+ + − − =

+ − − =

+ + − − =

⇒

11 33

44 33 13

12 13 33

8 ( 2)( 4) 0
4 ( 2) 2
8 8( 1) ( 2)

S R R S
S R S S
S R S R R S

= + + =

= + −

= + − +

⇒

dR r
dr

≡

first choose

⇒

13 33,  S S
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Strain correlation tensor

where

Potential property

If homogeneous and isotropic,

2 2 '
12 2 66 2 1

2 '
13 12 2 2

2 ' ' 2 ''
44 66 2 2 1 1

2 ' 2 ''
11 33 13 44 2 2 2

    2( )

( ) 2

( ) 6 3

( 2 ) 8 5

r E U r E U rU

r E E U rU

r E E U rU rU r U

r E E E E U rU r U

= − = − +

− = +

− = − + −

+ − − = − + +

⇒

( )( , )ijkl i j k lE U= −∇

1 2 1 2( , ) ( ) ( )ij i jU u u= 〈 〉x x x x

1 2ij ij i jU U U n nδ= +

66 11 122( )E E E= −
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Strain correlation tensor

where

Potential property

If homogeneous and isotropic,

⇒

2 2 '
12 2 66 2 1

2 '
13 12 2 2

2 ' ' 2 ''
44 66 2 2 1 1

2 ' 2 ''
11 33 13 44 2 2 2

    2( )

( ) 2

( ) 6 3

( 2 ) 8 5

r E U r E U rU

r E E U rU

r E E U rU rU r U

r E E E E U rU r U

= − = − +

− = +

− = − + −

+ − − = − + +

33 11 12

44 11 12

13 12

( 1) ( 1)
( 1) ( 2)
( 1)

E R E R R E
E R E R E
E R E

= + + +

= + − −

= +

⇒

dR r
dr

≡

first choose

⇒

11 12,  E E

( )( , )ijkl i j k lE U= −∇

1 2 1 2( , ) ( ) ( )ij i jU u u= 〈 〉x x x x

1 2ij ij i jU U U n nδ= +

66 11 122( )E E E= −
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OBSERVE

• For tensor-type properties of materials, 
need RFs consistent with mechanics

• Consistent with mechanics iff
mechanical definition of properties = 
energetic definition of properties

• Random fields of properties are 
functions of microstructure + mesoscale

• Micromechanics analyses lead to 
counterintuitive results

• Can construct correlation functions from 
products of basic 1D models

• Can go to: micropolar models, coupled 
field phenomena, inelastic properties,…



… the sea surface turbulence is neither 
spatially homogeneous nor isotropic

71

1ˆ ˆ( ) ( ) ( )j jb
a ai bj ai bji iB c c B c c B c−= =x x x

covariance function:

… for homogeneous turbulence:

⇒

1 2x = x - x

1 2 1 1 2 2( , ) : [ ( ) ( ) ][ ( ) ( ) ]j
i i j jiB T T T T= 〈 − − 〉x x x x x x

1 2( , ) ( )j j
i iB B=x x x

iZ• 1th-rank (scalar) statistically (wide-sense) isotropic TRF:

rotation of system    into    has to be accompanied 
by a simultaneous rotation of    into              
as well as a rotation of into 

x̂x
1( )iT x 1ˆ ˆ( )aT x

2ˆ ˆ( )bT x2( )jT x



… the sea surface turbulence is neither 
spatially homogeneous nor isotropic
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1ˆ ˆ( ) ( ) ( )j jb
a ai bj ai bji iB c c B c c B c−= =x x x

covariance function:

… for homogeneous turbulence:

⇒

1 2x = x - x

1 2 1 1 2 2( , ) : [ ( ) ( ) ][ ( ) ( ) ]j
i i j jiB T T T T= 〈 − − 〉x x x x x x

1 2( , ) ( )j j
i iB B=x x x

iZ• 1th-rank (scalar) statistically (wide-sense) isotropic TRF:

rotation of system    into    has to be accompanied 
by a simultaneous rotation of    into              
as well as a rotation of into 

x̂x
1( )iT x 1ˆ ˆ( )aT x

2ˆ ˆ( )bT x2( )jT x



locally isotropic or anisotropic, and statistically isotropic TRFs

can have locally anisotropic and/or statistically anisotropic TRFs

73

Two kinds of isotropy of 
tensor random fields (TRFs):

• local

• statistical 

ij ijC Cδ=



MECHANICS OF RANDOM MATERIALS

Lattice (Spring Network) Models

Martin Ostoja-Starzewski
Mechanical Science & Engineering, UIUC

1. One-Dimensional Lattices: Rods, Beams, Helices
2. Planar Spring Networks on Periodic Lattices: Classical Continua
3. Applications in Mechanics of Composites
4. Planar Spring Networks on Periodic Lattices: Micropolar Continua
5. Rigidity of Networks
6. Spring Network Models: Disordered Topologies
7. Fracture via Spring Network Models
8. Spring networks: classifications, pros and cons



1. Some One-Dimensional Lattices: 
1.1 Simple lattice and elastic string

1-D chain of particles of lattice spacing s, connected by axial springs

Taylor expansion up to 2nd derivative: 

 wave equation

Note: this can also be obtained from Hamilton’s principle with L in terms of continuum-
like quantities, by first introducing (1.3) in (1.1)1 with terms up to 1st derivative

i - 1 i i + 1

U 1
2
--- Fi ui 1+ ui–( )

i
∑

1
2
--- K ui 1+ ui–( )2

i
∑= = T 1

2
--- mu· i

2

i
∑= (1.1)

⇒
K ui 1+ 2ui– ui 1–+( ) mui

··=

ui 1± u xi
u x, xi

s 1
2!
-----u xx,

xi

s2+±≅ (1.3)

⇒

EAu xx, ρAu··= E Ks
A

------= ρ m
As
------= (1.4)



1.2 Micropolar lattice and elastic beam

(a) (b)
(a) 1-D chain of dumbbell particles (vertical rigid bars) of X-braced girder geometry, 

pin-connected by axial springs (thin lines); (b) shear and curvature modes of a single bay.

two DOF per particle i:   and . 

constitutive laws for a single bay (i to ) 

... introducing Taylor expansions for  and  with terms up to 2nd derivative, and

taking the limit , we find Timoshenko beam equations

U AE
2

------- u x,( )2 xd
0

d

∫= T Aρ
2

------- u·( )2 xd
0

d

∫= (1.6)

i - 1 i i + 1

wi ϕi
i 1+

F̃i K⊥ wi 1+ wi– sϕi 1+–( )= Mi K– ϕi 1+ ϕi–( )=

)

(1.7)

wi ϕi
s 0→

GA w x, ϕ–[ ] x, ρAw··= EIϕ xx, GA w x, ϕ–[ ]+ ρIϕ··= (1.10)



Note: alternatively, this could be obtained by first introducing Taylor series with terms
up to 1st derivative into (1.8)1, to first get 

and then, by employing the Hamilton’s principle.

U 1
2
--- K⊥ wi 1+ wi– sϕi 1+–[ ]2 K ϕi 1+ ϕi–( )2+

i
∑= T 1

2
--- mw· i

2 Jϕ· i
2

+
i
∑=

)

(1.8)

U 1
2
--- GA w x,( )2 EI ϕ x,( )2+[ ] xd

0

d

∫= T 1
2
--- Aρ w·( )2 Iρ ϕ·( )

2
+[ ] xd

0

d

∫= (1.12)



Can other, more complex (micro)structures, e.g. made of little beams connected by rigid
joints of beam-like geometry, be sufficiently well described by this beam model?  No

Noor & Nemeth (1980) recommend: 
(i) the equivalent micropolar beam model is set up from the postulate U = K stored 

in the original lattice when both are deformed identically;
(ii) typical repeating element is identified and energies for this element are expressed in

terms of nodal displacements, joint rotations, and geometric and material properties of
individual members;

(iii) a passage to an effective continuum is carried out via a Taylor expansion, with higher-
order terms showing up in the governing continuum equations, depending on the actual
microgeometry of the rods making up the structure.



1.3 Axial-twisting coupling and dynamics of a wire rope (helix)
 

Wire rope of a constant helix angle.

 a coupling between the axial force F and torque M on one hand, and the axial strain
 and rotational strain 

positive strain energy density 

 wire rope is a 1-D micropolar medium of a non-centrosymmetric type, 
also called hemitropic, antisymmetric, or chiral composite

⇒
ε β Rτs=

F C11ε C12β+= M C21ε C22β+= (1.12)

⇒
C12 C21= C11C22 C12C21± 0> (1.13)

⇒



two coupled wave equations governing the axial-twisting response of a wire

with wave speeds

axial vibrations of the wire are described by two types of waves slow and fast

Note: the waves that are primarily axial in nature (  > 1) propagate at speeds , 

      the waves that are primarily torsional in nature (  < 1) propagate at speeds .

⇒

C11u xx, C12ϕ xx,+ ρu··= C21u xx, C22ϕ xx,+ Jϕ··= (1.14)

c1 2,
2 C11C22 C12C21–( )

C11J C22ρ+( ) C11J C22– ρ( )2 4ρJC12C21+[ ]
1 2⁄

±
-------------------------------------------------------------------------------------------------------------------------------= (1.16)

c1 c< 2⇒

u x t,( ) U1e
ik x c1t–( )

U2e
ik x c1t+( )

U3e
ik x c2t–( )

U4e
ik x c2t+( )

+ + +=

ϕ x t,( ) Φ1e
ik x c1t–( )

Φ2e
ik x c1t+( )

Φ3e
ik x c2t–( )

Φ4e
ik x c2t+( )

+ + +=
(1.17)

U Φ⁄ c2
U Φ⁄ c1



2. Planar Spring Networks on Periodic Lattices: Classical Continua
2.1  Basic idea of a spring network representation

equivalence of strain energies in the unit cell of volume V 

where

α1
α2

α3
α4

X1

X2

Ucell Ucontinuum= (2.1)

Ucell Eb
b
∑

1
2
--- F u⋅( ) b( )

b

Nb

∑
1
2
--- ku u⋅( ) b( )

b

b

∑= = =

Ucontinuum
1
2
--- σ ε Vd⋅

V
∫

V
2
---ε C ε⋅ ⋅= =

(2.2)





2.2  Anti-plane elasticity on square lattice

where  and 

... locally homogeneous medium

for square lattice:
each node has one DOF (anti-plane displacement u), 
nearest neighbor nodes are connected by springs of constant k.  

 

σi Cijεj= i j, 1 2,= (2.4)

σ σ1 σ2,( ) σ31
0 σ32

0,( )≡= ε ε1 ε2,( ) ε31
0 ε32

0,( )≡=

Ciju ij, 0= ⇒ Cu ii, 0= (2.7)

Ucell U 1
2
---k li

b( )lj
b( )

b 1=

4

∑ εiεj= = Ucontinuum
1
2
--- εiCijεj Vd

V
∫= (2.9)

C11 C22
k
2
---= = C12 C21 0= = (2.11)

⇒



2.3  In-plane elasticity: triangular lattice with central interactions

Triangular lattice with a hexagonal unit cell shown.

planar continuum Hooke’s law

planar Navier’s equation for the displacement 

where  is defined by  (the same as 3-D)

central force interactions

σij Cijkmεkm= i j k m, , , 1 2,= (2.16)

ui

μui jj, κuj ji,+ 0= (2.18)

μ σ12 με12=

σii κεii=



 = spring constant of half-lengths of such central (normal) interactions

Fi Φij
b( )uj= where Φij

b( ) α b( )ni
b( )nj

b( )= (2.19)

α b( )

θ 1( ) 0o= n1
1( ) 1= n2

1( ) 0=

θ 2( ) 60o= n1
2( ) 1

2
---= n2

2( ) 3
2

-------=

θ 3( ) 120o= n1
3( ) 1

2
---–= n2

3( ) 3
2

-------=

(2.20)

1

23

4

5 6

 

β 5( )

β 1( )

β 6( )

β 3( )

β 4( )
α 1( )α 4( )

β 2( )

α 2( )α 3( )

α 6( )α 5( )



under uniform strain 

if  the same, 

 continuum is isotropic and only one independent elastic modulus

ε ε11 ε22 ε12, ,( )=

Ucell
l2

2
---- α b( )ni

b( )nj
b( )nk

b( )nm
b( )

b 1=

6

∑ εijεkm= (2.21)

⇒

Cijkm
l2

V
---- α b( )ni

b( )nj
b( )nk

b( )nm
b( )

b 1=

6

∑= (2.22)

α b( )

C1111 C2222
9

8 3
----------α= = C1122 C2211

3
8 3
----------α= = C1212

3
8 3
----------α=

(2.23)

⇒



Note: Cauchy symmetry

i.e. classical Lamé constants

Cijkm Cijmk Cjikm Ckmij Cikjm= = = = (2.24)

Cijkm λ δijδkm δikδjm δimδjk+ +( )= (2.25)

⇒

λ μ 3
4 3
----------α= = (2.26)



2.4  In-plane elasticity: triangular lattice with central and angular interactions

add angular springs acting between the contiguous bonds incident onto the same node

 six spring constants: { . 

 generalization of the Kirkwood model (1939) of isotropic material
[the same α and β springs]

β b( )

⇒ α 1( ) α 2( ) α 3( ) β 1( ) β 2( ) β 3( ), , , , ,{ }

⇒

Cijkm
α

2 3
---------- ni

b( )nj
b( )nk

b( )nm
b( )

b 1=

6

∑ +=

β

2 3l2
--------------- 2δiknj

b( )nm
b( ) 2ni

b( )nj
b( )nk

b( )nm
b( )– δiknp

b( )nj
b 1+( )np

b 1+( )nm
b( )–

⎩
⎨
⎧

+
b 1=

6

∑

ni
b( )nj

b 1+( )nk
b 1+( )nm

b( ) δiknp
b( )nj

b( )np
b 1+( )nm

b 1+( ) ni
b 1+( )nj

b( )nk
b( )nm

b 1+( )

⎭
⎬
⎫

+–

(2.30)



 

 two independent: planar bulk and shear moduli

 planar Poisson’s ratio

⇒

C1111 C2222
1

2 3
---------- 9

4
---α 1

l2
----β+⎝ ⎠

⎛ ⎞= =

C1122 C2211
1

2 3
---------- 3

4
---α 1

l2
----9

4
---– β⎝ ⎠

⎛ ⎞= =

C1212
1

2 3
---------- 3

4
---α 1

l2
----9

4
---β+⎝ ⎠

⎛ ⎞=

(2.31)

⇒

κ 1
2 3
---------- 3

2
---α⎝ ⎠

⎛ ⎞= μ 1
2 3
---------- 3

4
---α 1

l2
----9

4
---β+⎝ ⎠

⎛ ⎞= (2.32)

⇒

ν κ μ–
κ μ+
-------------

C1111 2C1212–
C1111

------------------------------------- 1 3β
αl2
--------–⎝ ⎠

⎛ ⎞ 3 3β
αl2
--------+⎝ ⎠

⎛ ⎞⁄= = = (2.33)

ν 1
3
---= if β α⁄ 0→ α model–

ν 1–= if β α⁄ ∞→ β model–
(2.34)

⇒



2.5  Triple honeycomb lattice  Day et al. (1992); Snyder et al. (1992)

three honeycomb lattices, with constants α, β, and γ, forming a single triangular lattice

spring assignement 

 model permitting planar Poisson’s ratio from 1/3 up to 1

α 2α1( ) 1– 2α2( ) 1–+[ ]=

κ 1
12

---------- α β γ+ +( )= μ 27
16
------ 1

α
--- 1

β
--- 1

γ
---+ +⎝ ⎠

⎛ ⎞ 1–
=

    (2.35)

⇒



3.  Applications in Mechanics of Composites
3.1  Representation by a fine mesh

from  in 2-D 

with [  is the property at ]

α1
α2

α3
α4

X1

X2

u2∇ ⇒

kr kl ku kd+ + +[ ] u i 1 j,+( )kr– u i 1– j,( )kl– u i j 1+,( )ku– u i j 1–,( )kd– (3.1)

C i j,( ) i j,( )

kr 1 C i j,( )⁄ 1 C i 1+ j,( )⁄+[ ] 1–=

kl 1 C i j,( )⁄ 1 C i 1– j,( )⁄+[ ] 1–=

ku 1 C i j,( )⁄ 1 C i j 1+,( )⁄+[ ] 1–=

kd 1 C i j,( )⁄ 1 C i j 1–,( )⁄+[ ] 1–=

(3.2)



this discretization is equivalent to a finite difference method (via expansions)

in the governing equation  

Note: in the case of in-plane elasticity problems, the spring network is not identical to the
finite difference method, because the node-node connections of spring network do not have
a meaning of springs, whereas the finite difference connections do not. 

u i 1± j,( ) u i j,( ) s x1∂
∂ u i j,( )( )

i j,

s2

2!
-----

x1
2

2

∂

∂ u i j,( )

i j,

+±=

u i j 1±,( ) u i j,( ) s
x2∂
∂ u i j,( )( )

i j,

s2

2!
-----

x2
2

2

∂

∂ u i j,( )

i j,

+±=
(3.3)

C
x1

2

2

∂

∂ u

x2
2

2

∂

∂ u+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

0=



Parameter plane



1. for a composite made of two locally isotropic phases: matrix (m) and inclusions (i) 

 contrast   (mismatch) 

2. aspect ratio of ellipses 

σi Cijεj= i j, 1 2,= Cij C m( )δij= or C i( )δij (3.5)

⇒ C i( ) C m( )⁄

a b⁄



3.2  Solutions of linear algebraic problems

elliptic problems in discretized form  linear algebraic systems 

 in principle, two methods to set up and solve the governing equations:

(i) exact - via global stiffness matrix accompanied by the connectivity of all the nodes

(ii) iterative - via energy minimization (e.g. conjugate gradient method)  energy

with

with respect to all the DOFs
e.g. (Numerical Receipes, Press et al., 1992)

... other algebraic solvers

⇒
A x⋅ b= (3.6)

⇒

⇒

F x( ) 1
2
---x A x⋅ ⋅ b x⋅–= (3.7)

F∇ x( ) A x⋅ b–= (3.8)



Note: the entire task of mesh generation - such as typically required by FE - is absent

Procedure: 
(i) the energy and energy gradient subroutines are written only once for the given mesh 

(ii) the assignment of all the local spring stiffnesses - according to any chosen lattice model
- is done very rapidly in the first stage of the program

(iii) these stiffnesses are stored in the common block (in case of a Fortran program) and are
readily accessible to the conjugate gradient subroutines that are activated in the second, and
main, stage of the program

(iv) once the energy minimum is reached to within any specified accuracy, this energy is
used to compute the overall, effective moduli of a given domain of the lattice based on the
postulate of the energy equivalence



Some exact relations that may be used in testing computer programs:

(i) Suppose we have solutions of two elasticity problems on a certain domain B, with
boundary , corresponding to the displacement (d) and traction (t) boundary value
problems, respectively. Then we can check whether Betti’s reciprocity theorem

is satisfied numerically within some acceptable accuracy. 

(ii) Perfect series and parallel systems are well known to result in the arithmetic (Voigt) and
harmonic (Reuss) averages

where  and  are the volume fractions of phases and 1 and 2, respectively.

B∂

ui
t( )ti

d( ) sd
B∂
∫ ui

d( )ti
t( ) sd

B∂
∫= (3.9)

CV f1C1 f2C2+= CR f1
C1
------

f2
C2
------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

= (3.10)

f1 f2



(iii) The case of small contrast in properties allows an expansion of, say, effective conduc-
tivity to second order in the difference  as follows (Torquato, 1997)

where d is the dimensionality of the space.

(iv) Exact relation in conductivity (Keller, 1964): for a two-phase isotropic system in 2-D,

where  = effective conductivity of a given system, 

 = effective conductivity with phases 1 and 2 interchanged.

C2 C1–( )

Ceff C1 f2 C2 C1–( ) f1f2
C2 C1–( )2

C1
---------------------------1

d
--- O C2 C1–( )3 …+ +–+= (3.11)

Ceff C1 C2,( )Ceff C2 C1,( ) C1C2= (3.12)

Ceff C1 C2,( )

Ceff C1 C2,( )



(v) Note the CLM Theorem (Cherkaev, Lurie, Milton, 1992; Thorpe & Jasiuk, 1992):
transformation of an original 2-D material with properties ( , ) into a new material

with properties ( ,  

preserves the stress state

equivalently,

 effective compliances

κ x( ) μ x( )

κ x( ) μ x( )

1
κ
--- 1

κ
--- 1

Λ
----+= 1

μ
--- 1

μ
--- 1

Λ
----–= Λ const=

A 1
κ
---≡ S 1

μ
---≡ c 1

Λ
----=

⇒
1

κ
eff

--------- 1

κeff
--------- 1

Λ
----+= 1

μ
eff

--------- 1

μeff
--------- 1

Λ
----–= Λ const=



... for isotropic or anisotropic materials, compliance is transformed/shifted by 

with

 effective compliance tensor of the second material is given by that of the first mate-
rial plus the same shift as that for the individual phases

Sijkl
I Λ Λ–,( )

Sijkl
T Sijkl Sijkl

I Λ Λ–,( )+=

Sijkl
I Λ Λ–,( ) 1

2Λ
------- 1

2
---δ

ij
δkl

1
2
--- δikδjl δilδjk δijδkl–+( )–=

⇒

Sijkl
effT Sijkl

eff Sijkl
I Λ Λ–,( )+= (3.16)



Parallel computing

A functionally graded matrix-inclusion composite with 47.2% volume fraction of black 
phase is partitioned into  subdomains - 64-processor parallel computer.8 8×



3.3  Example simulation of a polycrystal
very thin polycrystalline aluminum specimen (Grah et al., Acta Mater. 1996)

(i) an image of crystal domains is scanned and mapped onto a triangular mesh
the 3-D stiffness tensor  for each crystal is found according to its transformation

matrix  ( ) (via ‘Kikuchi surface electron backscattering’)

Cijkm
aij i j, 1 2 3, ,=



(ii) every bond is assigned its stiffness depending on the domain it falls in, i.e.
- map

- to local stiffnesses via

- and then to 

(iii) computational mechanics of the resulting spring network
- planar dilatation
- intergranular multi-crack propagation

Cαβ
Al

10.82 6.13 6.13 0 0 0
6.13 10.82 6.13 0 0 0
6.13 6.13 10.82 0 0 0

0 0 0 2.85 0 0
0 0 0 0 2.85 0
0 0 0 0 0 2.85

104MPa= (4.3.17)

C′npqr aniajpakqamrCijkm= n p q r, , , 1 2 3, ,= (4.3.18)

α1 α2 α3 β1 β2 β3, , , , ,



4.  Planar Spring Networks on Periodic Lattices: Nonclassical Continua
4.1  Triangular lattice of Bernoulli-Euler beams (Wozniak, 1970)

nodes of the network of beams described by

within each triangular pore, these functions may be assumed to be linear 

u1 x( ) u2 x( ) ϕ x( ) (4.1)

⇒
γkl ul k, elkϕ+= κi ϕ i,= (4.2)



elementary beam theory 

  = beam cross-sectional area

 =  = centroidal moment of inertia

 = Young’s modulus of beam’s material

 = mesh spacing

for micropolar continuum

⇒

F b( ) E b( )A b( )γ b( )= F̃
b( ) 12E b( )I b( )

s2
------------------------- γ̃

b( )
= M b( ) E b( )I b( )κ b( )= (4.6)

A b( )

I b( ) w3h 12⁄

E b( )

s s b( )≡

Ucontinuum
V
2
---γijCijkmγkm

V
2
---κiDijκj+= (4.7)

⇒

Cijkm ni
b( )nk

b( ) nj
b( )nm

b( )R b( ) nj
b( )nm

b( )R̃
b( )

+( )
b 1=

6

∑= Dij ni
b( )nj

b( )S b( )

b 1=

6

∑=

(4.8)



when all the beams the same 

i.e.

in which

⇒

R b( ) 2E b( )A b( )

s b( ) 3
------------------------= R̃

b( ) 24E b( )I b( )

s b( )( )
3

3
-------------------------= S b( ) 2E b( )I b( )

s b( ) 3
----------------------= (4.9)

C1111 C2222
3
8
--- 3R R̃+( )= = C1212

3
8
--- R 3R̃+( )=

C1122 C2211
3
8
--- R R̃–( )= = C1221 C2112

3
8
--- R R̃–( )= =

D11 D22
3
2
---S= =

(4.10)

Cijkm δijδkmΞ δikδjmΛ δimδjkΠ+ += Dij
eff δijΓ= (4.11)

Ξ Π 3
8
--- R R̃–( )= = Λ 3

8
--- R 3R̃+( )= Γ 3

2
---S= (4.12)



... can use four compliances A, S, P, and M 

Note: introduction of beam-type effects has a similar influence on E and ν as the introduc-
tion of the angular β-interactions in the Kirkwood model

Note: since  (w = beam width), given the slenderness assumption of beam
elements, this model does not admit Poisson’s ratios below ~0.2.

A 1

Ξ Λ Π+
2

---------------+
-------------------------= S 2

Λ Π+
---------------= P 2

Λ Π–
--------------= M 2

3Γ
------= (4.13)

⇒

κ 3
4
---R= μ 3

8
--- R R̃+( )= (4.14)

⇒

E 3R
1 R̃

R
---+

3 R̃
R
---+

-------------= ν
1 R̃

R
---–

3 R̃
R
---+
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R̃ R⁄ w s⁄( )2=



 2-D compliance tensors

 micropolar characteristic length

 ... compare to computation of l for two-phase composites

⇒
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⇒



4.2  Triangular lattice of Timoshenko beams
solve the b.v.p. 

  

where

Two limiting cases:
, high shear stiffness (less deflection owing to shear)  B-E slender beam;

, low shear stiffness (deflection owing to shear dominates over that due to Young’s
modulus E)  general case of the Timoshenko beam.

EIθ″ GA v′ θ–( )+ 0= GA v″ θ′–( ) 0=
v 0( ) 0= θ 0( ) 0= v′ 0( ) θ 0( )– 0=

v s( ) γ̃
b( )

s= θ s( ) 0= v′ s( ) θ s( )– 0=

(4.20)

⇒
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= (4.21)
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β 1>

⇒



 effective moduli 

with

 

⇒
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 in terms of the porosity p (pores’ volume fraction)⇒

Eeff

taE b( )
--------------- 2 1 1 p––( )

1 1
3 1 β+( )
-------------------- 1 1 p––( )

2
+

3 1
3 1 β+( )
-------------------- 1 1 p––( )

2
+

---------------------------------------------------------------=

νeff
3 1 1 p––( )

2 3
1 β+
------------–

9 1 1 p––( )
2 3
1 β+
------------+

-------------------------------------------------------=

(4.26)



4.3  From stubby beams to a perforated plate model

Note: as porosity p goes beyond 50%, the beam’s aspect ratio  increases so high that one
can no longer model the connections between the lattice nodes as beams. 
Note: as , “dilute limit” of a locally isotropic material with triangular holes 

(Jasiuk et al., 1994; Jasiuk, 1995)

with  = 4.2019 and  = 0.2312
[analogous coefficients are available for plates with squares, pentagons, ...)

Note: beam effects gain in influence as the pores’ volume fraction increases, and lead to an
increase of the effective Young’s modulus relative to the central-force model. 

Note: Timoshenko beams, although more sophisticated than Bernoulli-Euler beams,
remain, in principle, one-dimensional objects, of micropolar type in fact. A better
approach would have to consider beam segments as little plates, i.e., 2-D objects. 

Note: lattice nodes that are taken as rigid objects in this model, could more realistically be
modeled by considering their deformability; this will be demonstrated below.

w s⁄

p 1→

Eeff

taE b( )
--------------- 1 α 1 p–( )–= νeff ν b( ) α ν b( ) ν0–( ) 1 p–( )–= (4.27)

α ν0



4.4  Square lattice of Bernoulli-Euler beams
(Wozniak, Surface Lattice Structures 1970)

where

⇒

Cijkm ni
b( )nk

b( ) nj
b( )nm

b( )R b( ) nj
b( )nm

b( )R̃
b( )

+( )
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4
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b( )S b( )
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4
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(4.29)

R b( ) E b( )A b( )
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---------------------= R̃

b( ) 12E b( )I b( )

s b( )( )
3
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s b( )
-------------------= (4.30)



when all the beams are identical  orthotropic continuum

 two micropolar characteristic lengths

r = radius of gyration

⇒

C1111 C2222 R= = C1212 C2121 R̃= = D11 D22 S= = (4.31)

⇒

l1
S
R̃
--- s

2 3
----------= = l2

S
R
--- r I

A
---≡= = (4.32)



For lattice nodes taken as deformable nodes,

where

Note: a recent extension of such micropolar models to wave propagation and vibration via
introduction of internal variables:
(Wozniak, Arch. Mech. 1997; Cielecka et al., Arch. Mech. 1998)

Note: other recent work: (Pshenichnov, A Theory of Latticed Plates and Shells 1993)
(Cioranescu & Saint Jean Paulin, Homogenization of Reticulated Structures 1999)
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4.5 A honeycomb latitce; three possible periodic unit cells are shown.

Cijkm …= Dij …=

l …=



4.6  Non-local and gradient elasticity on a lattice with central interactions 
(Holnicki-Szulc & Rogula, 1979)

structure I (with short-range interactions) 

structure II (three regular triangular networks with long-range interactions) 

central-force interactions between nodes  and 

Q: what continuum model should be set up to approximate this discrete system? 
A: three types possible: local, non-local, and strain-gradient. 

αrr′ αI=

αrr′ αII=

r r′

Fi r r′,( ) Φij
rr′Δuj r r′,( )= (4.35)

Φij
rr′ αrr′ΔriΔrj= Δuj r r′,( ) uj r′( ) uj r( )–= Δri ri′ ri–= (4.36)



(a) Local continuum model
... under uniform strain,

equivalent to strain energy of effective continuum

E 1
2
--- Fi r r′,( )Δui r r′,( )

r r′,
∑

1
2
--- Φij

rr′Δui r r′,( )Δuj r r′,( )
r r′,
∑= = (4.37)

Econtinuum
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⇒



(b) Non-local continuum model

distribute the values of tensors  and  at point  uniformly over the regions of
interactions of structures I and II, and form a new tensor

 = ,  =  are the areas, 

 and  are the characteristic functions of regions of interaction 
in the neighborhood of 

Cijkm
I Cijkm

II r
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(c) Strain-gradient continuum model

... a series expansion of the relative displacement field:

where

are gradients of 1st and 2nd orders of the displacement field
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⇒



comparing to

where

completely analogous formulas hold for  and 

see also (Bardenhagen & Triantafyllidis, 1994) for higher order gradient theories 

Econtinuum
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4.7  Plate-bending response  (Wozniak, Surface Lattice Structures 1970)

... out-of-plane deformations

assuming, within each triangular pore, these functions to be linear

u x( ) w1 x( ) w2 x( ) (4.49)

κkl vl k,= γk u k, εklvl+= (4.50)



... for a single beam

the strain energy of unit cell

which is consistent with the Hooke’s law

 = tensor of moment-stresses,  = vector of shear tractions.
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... if lattice made of identical beams,

in which

Cijkl δijδklΔ δikδjlY δilδjkΩ+ += Aij δijB= (4.56)
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5.  Rigidity of Networks
5.1  Structural topology and rigidity percolation

Q: Given the topology of a central force (or truss) system , e.g. 

 = 71  = 37
is it a sufficiently constrained system or not? 
i.e., is it an intrinsically rigid body? 

Two approaches to structural rigidity: static or kinematic.

G V E,( )

E V



Static approach:
A system of forces assigned to the nodes of a network is said to be an equilibrium load iff
the sum of the assigned vectors is the zero vector, and the total moment of those vectors
about any one point is zero. 
A network resolves an equilibrium load iff there is an assignment of tensions and compres-
sions to all the bars of E, such that the sum at each node is equal and opposite to its assigned
load. A structure is said to be statically rigid iff it resolves all equlibrium loads.

Kinematic approach: 
infinitesimal motion = assignment of velocities to all the nodes of V, such that the difference
of velocities assigned to the ends of any bar is perpendicular to the bar itself; 
i.e. the motion does not result in any extension or compression of the bar. 

 every connected plane structure has at least three DOF (two translations and one
rotation), called a rigid motion. 

Def: A structure is said to be infinitesimally rigid if and only if all its infinitesimal motions
are rigid motions. 

⇒



Thm. (Crapo & Whiteley, 1989): A structure is statically rigid iff it is infinitesimally rigid.

Def: A structure is said to be isostatic iff it is minimally rigid, i.e., when it is infinitesimally
rigid but the removal of any bar introduces some infinitesimal motion. 

Note: in an isostatic strcuture all the bars are necessary to maintain the overall rigidity. In
statics this is called a statically determinate structure, as opposed to the indeterminate one
which has more than a minmally sufficient number of bars for the global rigidity. 

A well known result (necessary condition) for rigidity in 2-D:

... for sufficiency: Thm (e.g., Laman, 1970; Asimov & Roth, 1978): 
 is isostatic iff it has  bars, and for every , , no subset of 

nodes has more than  bars connecting it. 
 can check whether the edges of the graph are not distributed spatially in a uniform

manner. If they are crowded locally, than the odds are that the structure is not isostatic. 

E 2 V 3–= (5.1)

G V E,( ) 2 V 3– m 2 m V≤ ≤ m
2m 3–

⇒



Note: the isostatic concept falls in the category of generic rigidity, where only the topolog-
ical information on a graph’s connectivity comes into picture. 

! one may also deal with unexpected infinitesimal motions:
e.g. two edges incident onto the same vertex lie on a straight line (Guyon et al, 1990):

in condensed matter physics  very large systems  need to ask: 
what critical fraction, , of edges of E is needed to render the structure isostatic? 

 would have  new edges of thus modified, or depleted, set 

Note:    = 2/3
a simple estimate of the so-called rigidity percolation
e.g., (Shechao Feng et al., 1985), (Thorpe et al., 1986), (Boal, 1993)

Note: the rigidity percolation typically occurs above the connectivity percolation:  > 

⇒ ⇒
pr

⇒ E′ pr E= E′

E′ 2 V 3–= ⇒ pr

pr pc



Poisson line field e.g. (Miles, 1964, Santaló, 1976)

1. Poisson point field in -plane

2. Hesse normal form: 

to get a field of lines, homogeneous in -plane

Note: other methods do not result in homogeneous line fields!

0 

2π 

D/2

x

y

p

p

θ 

θ

Poisson line fieldRandom generation of p and θ 

p θ,( )

x θcos y θsin+ p=

x y,( )





5.2  Rigidity of a truss of Poisson line field geometry
 basic model of cellulose fiber networks and some other composites (Cox, 1952)

Note: typical vertices have connectivity 4, i.e., 

... can calculate the total number of edges in the bold drawn graph 

but, since , 

so that   - the system is not isostatic, i.e., a mechanism

 the Poisson line field of axial force fiber segments (so-called Cox model) - is not a
valid model of paper, or any other solid material 
In real 2-D networks fibers have finite length  fibers’ ends are loose 

  and  increase!
Note: Going to 3-D requires an even more stringent condition as more constraints are
needed when dealing with the additional degrees of freedom (e.g., Asimov & Roth, 1978). 

⇒

V4

G V E,( )

E V2
3
2
--- V3 2 V4+ += (5.2)

V V2 V3 V4∪∪=

V V2 V3 V4+ += (5.3)
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⇒

⇒
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5.3  Rigidity of a fiber-beam network



... highly porous materials (Chung et al., 1996)
cement-coated wood strands composites (Stahl & Cramer, 1998)
fiber networks (Ostoja-Starzewski et al., 1999, 2000)

Construction:

(i) Boolean model: floc centers: fiber clusters/flocs  
fibers are laid in 3-D on top of one another with possible non-zero out-of-plane angle

(ii) Fibers are homogenous, but each fiber may have different dimensions and mechanical
properties, all sampled from any prescribed statistical distribution

(iii) Each fiber is a series of linear elastic 3-D extensible Timoshenko beam elements.
stiffness matrix, written here in an abbreviated form set up in a corotational coordinate
system (Cook et al., 1989)

,   = axial force and twisting moment, 

, , ,  = bending moments around the  and  axes at the  and  ends

g 12
EIy
GA
--------= h 12

EIz
GA
--------= a

EIy

l 12g l2+( )
---------------------------= b

EIz

l 12h l2+( )
---------------------------= (5.5)

F T

My
a Mz

a My
b Mz

b y z a b



, , , , ,  = axial elongation, angle of twist, four angles of rotation 

, , , , and  = length, cross-sectional area, 

, , and  = cross-sectional polar moment of inertia, moments of inertia 

 and  are the Young’s modulus and shear modulus of a fiber-beam

(iv) All the intersection points are identified so as to set up a connectivity matrix.

(v) Equilibrium is found under kinematic boundary conditions .

F
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Note: 

(i) The sharp kinks we see in both figures are only the artifact of simple computer graph-
ics---the micromechanical model assumes fibers deform into differentiable curves.
Magnification creates the appearance of large displacements - actually, an infinitesimal
displacement assumption is used in the computational mechanics program.

(ii) The kinks are far more pronounced when fibers have low flexural stiffness. Portions of
the network where connected fibers do not form triangular pores can generate signifi-
cant forces in response to deformation when fibers have high flexural stiffness, but they
cannot do so when fibers rely almost entirely on axial stiffness. These portions of the
network are not stable in the sense of loss of generic rigidity discussed earlier.

(iii) We do not study this rigid-floppy transition by turning, in an ad hoc fashion, all the
connections into pivots. Rather, with the model taking into account all the displace-
ments and rotations of nodes, we can study it as a continuous function of fiber slender-
ness; see also (Kuznetsov, 1991). This aspect is impossible to investigate with models
based on central-force potentials for single fiber segments (e.g., Kellomaki et al., 1996). 



5.5  Rigidity percolation in a triangular truss



5.5  Rigidity percolation in a Poisson-Delaunay truss



spider-inclusion analogy: an inclusion as a cell in a Voronoi tessellation, and a corre-
sponding spider in the dual Delaunay network.



6.  Spring Network Models: Disordered Topologies
6.1  Load transfer mechanisms in heterogeneous media

granular medium via discrete elements (DE) - (Cundall & Strack, 1978)

Fig. 6.1(a) A cluster of five grains showing the lines of interactions; (b) a discrete element 
model showing the normal force, the shear force, and the moment exerted by grains 2 and 
3 each onto the grain 1; (c) a most general model showing the same grain-grain interac-

tions as before but augmented by an internal, angular spring constant ; (d) a simplified 
model adopted in this paper, showing only normal ( ) and angular ( ) effects.

ka

kn ka



Types of DE models:

 Central interactions:  

 Central and angular interactions: 

a generalization of Section 2.4

 Central, shear and bending interactions: 

a generalization of Sections 4.1 and 4.2
 a locally inhomogeneous micropolar continuum

 Central, shear, bending, and angular interactions: the total energy is

Note: there exist successful DE models which account for normal and shear forces only
(Bathurst & Rothenburg, 1988, 89)... although lacking rotational invariance of energy.

•

U Ucentral= (6.1)

•

U Ucentral Uangular+= (6.2)

•

U Ucentral Ushear Umoment+ += (6.3)

⇒

•

U Ucentral Ushear Umoment Uangular+ + += (6.4)



Note: correspondence between a system of convex grains and its graph model:

 assignment of mechanical quantities:

connectivity of  is described by the incidence matrix  (Satake, 1976, 1978)

Table 1: 

assembly of grains graph index number of elements

grain vertex v

contacting point edge e

void (in 2-D) loop l

Table 2: 

quantity notation number of 
elements notation quantity

body force grain displacement

body couple grain rotation

contact force relative displacement

contact couple relative rotation

V

E

L

⇒

Bv V
uv

Nv V we

Fe E Δue

Me E Δwe

G V E,( ) Dve



 total of  equilibrium equations, each w.r.t. a grain of radius  and volume  

 = unit vector of edge e in nonoriented graph

kinematics of all the edges

subject to  compatibility constraints written for all loops

⇒ 3 V rv Vv

Dve Fe

Me
Vv Bv

Nv
+ 0= (6.5)

D̃
ve Dve 0

rvDvene × Dve
= (6.6)

ne

Δue

Δwe
D̃

ev uv

wv
–= (6.7)

3 L



D̃
ev Dev ne rvDev×–

0 Dev
= (6.8)



This is augmented by  constitutive equations relating contact force  and moment

 with relative displacement  and rotation .

Note: Given 3 global equilibrium conditions, we have a total of 

equations. 

 given Euler relation , this budget of equations agrees with 

unknowns - i.e., , ,  and  - defined on edges of .

Note: formal analogy of (6.5) and (6.7) to equilibrium and strain-displacement equations
of Cosserat continua

3 E Fe

Me Δue Δwe

3 V 1 E L+ +–( ) 6 E= (6.9)

⇒ V E L+– 1= 6 E

Fe Me Δue Δwe E

Div σ
μ

b
m

+ 0= γ
κ

Grad u
w

= (6.10)



6.3  Periodic graphs with topological disorder  (e.g., Ziman, 1979)

two basic possibilities of randomness: 

substitutional disorder

topological disorder (departure from the periodic topology)
e.g., incompatibility of crystal-like domains in a granular material

geometric disorder (e.g., uneven lengths of various bonds)

(a) (b)



Fig. 6.2 Substitutional (a) versus topological disorder (b) of a hard-core Delaunay network.



for effective (macroscopic) moduli , 

use periodic boundary conditions on  square B
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Poisson point field has space-homogeneous and isotropic statistics

 ( ) is isotropic CL
eff Cijkl

eff≡



... calculate effective moduli κ and μ: 

biaxial extension  

shear deformation 

from equivalent continuum of area  

in a Monte Carlo sense ... via ensemble averages: , 

ε11 ε22=

ε11 ε22–=

V L2=

U V
2
--- κεiiεjj 2μ εijεij

1
2
---εiiεjj–⎝ ⎠

⎛ ⎞+= (6.12)

κ〈 〉 μ〈 〉



7. Fracture via Spring Network Models









Simulations of Evolving Damage

quasi-static

dynamic



8. Spring networks: classifications, pros and cons

Resolution of a planar mosaic by the square lattice indicates that there are several possible ways of

classifying spring network models - they include:

(a) static versus dynamic;

(b) lattice topology directly given by the material microstructure, or assigned by another rule;

(c) springs modeling central-force interactions only, or also non-central and other;

(d) elastic versus inelastic;

(e) physical system dimensionality (D = 1, 2, or 3). 

Ad (a): Static version of lattice modeling neglects the inertia forces, as opposed to the dynamic version,

which belongs to molecular dynamics; the latter one covers also non-lattice systems such as fluids.

There is a trade-off here: including dynamics forces one to integrate forward in time by time steps

small enough so as to satisfy some stability condition appropriate for am explicit scheme adopted

(e.g. leap-frog). As a result, having a very fine lattice, one is likely to work on very short time scales

that are suitable for high-speed transient rather than quasi-static phenomena which would necessi-

tate a huge number of forward time steps. In molecular dynamics one can also use an implicit

scheme allowing for larger time steps, but at a costly expense of having to solve an algebraic system



for many interacting bodies. 

Ad (b): Spring networks are most natural when the lattice topology is directly given by the material -

some examples are:

- cellulose fiber network with each fiber treated as a 3-D rod element (e.g., Ostoja-Starzewski et al.,

1999);

- granular media with each grain modeled by a vertex interacting via central and shear forces, plus

moments, with contiguous grains (e.g., Alzebdeh and Ostoja-Starzewski, 1999). Such an assign-

ment is not possible in the case of polycrystals and other continuum-like systems, Fig. 26. Evidently,

modeling a crystal by a single vertex would be primitive (though sometimes employed with suc-

cess), and a number of vertices is needed to get a finer resolution. The latter option seems to be better

accomplished by finite elements, but the great advantage of a regular, periodic network is no need

for costly remeshing (preprocessing) and, therefore, the possibility to easily automate the procedure

so as to run in a Monte Carlo fashion (!).

Ad (c): By going to a triangular lattice arrangement, the central-force lattice outlined above can be used

to model in-plane elasticity. To cover the entire range of continuum stiffnesses one may have to

introduce non-central potentials. By allowing for the inter-vertex moments, one goes to micropolar



continua; e.g. (Ostoja-Starzewski et al., 1996). Furthermore, by allowing for interactions between

further neighbors, one may model non-local continua (Askar, 1985). A lot of work on micropolar,

and higher-order, models of plate- and shell-like systems was reported in (Wozniak, 1970) and Noor

(1988). For more recent work on models of lattice structures we refer to (Pshenichnov, 1993), and

for mathematical aspects of their homogenization to (Cioranescu and Saint Jean Paulin, 1999).

Finally, we mention here recent work on honeycomb lattices (Chen et al., 1998), which treats the

issue of effective elastic moduli as well continuum-type fracture of porous materials with such

microgeometry.

Ad (d): Spring networks work best for linear elastic materials (e.g., Alzebdeh et al., 1998), but some

extensions even to plasticity have recently been carried out; see (Monette and Anderson, 1999) and

references therein.
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1 Random Processes and Fields

1.1 Elements of 1D random fields

1.1.1 Scalar random fields

(scalar) random variable (r.v.)

 : Ω→ R () =  (1.1)

Note: The term random variable is a misnomer as it is a function in the first place.

probability distribution of 

() = { ≤ } (1.2)



if differentiable, =⇒ probability density of 

() =
()


 (1.3)

Example 1 : Measurements of random paper stiffness modulus  =  of 1” × 1”

specimens, separated by 15”, at  (= 500) points along a paper web, =⇒ ,  ∈  =

{1 2  }.

{( ); ∈ Ω  ∈ } = (scalar) random field parametrized by .

May parametrize  by a continuous .

=⇒  is replaced by ⊂ , and  is a 1D random field (or random/stochastic process in

1D). It assigns to ∀ a realization (or trajectory) over  :

 : Ω× → R ( ) =  (1.4)



Figure 1.1: A sample realization of random process  (Young’s modulus), its
autocorrelation, and spectrum.



Note: Four interpretations of :

(1) a set, or ensemble, of all functions ( ):  and  are variable;

(2) a single deterministic function (a realization) ():  is fixed but  is variable;

(3) a random variable ():  is variable but  is fixed;

(4) a deterministic number :  and  are fixed.

Note: Conventional literature on random/stochastic processes typically introduces a parame-

trization by the time () rather than space () coordinate.

∀ introduce a first-order (or one-point) probability distribution of the process 

 (;)≡  1 (;)= {() ≤ } (1.5)



if  (;) is differentiable w.r.t. , have first-order probability density of 

 (;)≡ 1 (;)=
 1(;)


 (1.6)

... second-order (or two-point) probability distribution

2(1 2;1 2) = {(1) ≤ 1 (2) ≤ 2} (1.7)

with

2(1 2;1 2) =
22(1 2;1 2)

12
 (1.8)

... -th-order (or n-point) probability distribution of 

(1  ;1  ) = {(1) ≤ 1  () ≤ } (1.9)

i.e., a function of 2 variables; -th-order probability density

(1  ;1  ) =
(1  ;1  )

1
 (1.10)



Q: given a family of functions , can we find a stochastic process such that
’s are its -th order probability distributions?

A: Kolmogorov conditions: if ’s is a family of distributions dependent on ,
such that for any , any  ∈ , and any permutation 1   of numbers
1  , the following must hold:

(i) symmetry (i.e., invariance w.r.t. permutation)

(1  ;1  ) = (1  ;1  ); (1.11)

(ii) consistency ∀  

(1  ∞ ∞;1  ) = (1  ;1  ) (1.12)



Example 2: Consider the case  = 2, and

 (1 2;1 2)=
1

212
p
1− 2

exp

⎡⎣ −1
2
³
1− 2

´ Ã21
21
− 21

1

2
2
+

22
22

!⎤⎦ 
(1.13)

where 1 = 1, 2 = 2 − 1, 0  1  2,  ∈ R1,  = 1 2. Then
the marginal densities are

Z
R1

 (1 2;1 2) 2 =
1

1
√
2
exp

"
−21
21

#
Z
R1

 (1 2;1 2) 1 =
1

(2 − 1)
√
2
exp

"
− 22
2 (2 − 1)

2

#

=  (1 2 2) 

(1.14)

=⇒  (1 2 2) depends on 1 and 2, =⇒  (1 2;1 2) does not sat-



isfy the Kolmogorov conditions, =⇒ it cannot represent a second-order density
function 2(1 2;1 2) of a stochastic process  ().



Mean (or average ()) of the process  is

h()i =
Z
R
 1(;) =

Z
R
1(;) (1.15)

h i ≡ ensemble averaging

... autocorrelation

(1 2) ≡ (1 2) = h(1)(2)i =
Z
R
122(1 2;1 2)12

(1.16)
autocovariance (covariance of (1) and (2))

(1 2) ≡ (1 2) = h[(1)− (1)][(2)− (2)]i (1.17)

=⇒ (1 2) = (1 2)− (1)(2).

... setting 1 = 2 = , =⇒ variance of ()

2()= ( ) = ()− 2() = h()2i− h()i2 (1.18)



Note: The covariance is symmetric (1 2) = (2 1); when the process is complex-

valued, it is Hermitian. Furthermore, by the Cauchy-Schwartz inequality, the squared modulus

of (1 2) never exceeds the product of the variances 
2(1) and 

2(2)

2(1 2) ≤ 2(1)
2(2) = (1 1)(2 2) (1.19)



Example 3: A point is at ( ) at time 0 = 0 in the ( )-plane, and
then moves with a velocity  on the straight line. () is a random vector
Z. At time  the point is at ( ( )) where  ( ) =  () +  ().
Realizations of the  ( ) process are rays  () = +  for  ≥ 0;  and 
are fixed. The mean and the autocorrelation are found to be (Problem 2)

h ()i = h i+  hi  (1 2) =
D
 2
E
+ hi (1 + 2) +

D
2
E
12 

(1.20)

Example 4: With  and  as above, we form a differential equation for   0





+ = 0 (1.21)

with the initial condition  () = 2 (),  () being the Heaviside function.
Obviously, the solution is  () = 2 exp (−) () and this stochastic
process consists of a family of exponentials.



Example 5: Consider a random process  () =  sin, where  () is
given and  is a deterministic parameter  ∈ [14 12]. Then, the first-order
distribution function is

 () =  { sin ≤ } = 
½
 ≤ 

sin

¾
= 

µ


sin

¶
 (1.22)

Example 6: Consider

 ( ) =

(
sin if  = 
2 if  = 

 (1.23)

=⇒ process  consists of two very regular curves.



We are rather interested in processes where randomness is "richer" and "extends into infinity".

... a classical example

 ( ) = () cos +() sin  (1.24)

where   0, and ,  are ind. r.v.’s with standard Gaussian densities (0 ), or

 ( ) = ()[ cos +Φ()] (1.25)

with

h ()i= 0 (1 2) = 2 cos (2−1)  (1.26)

... more general model

 ( ) =
X
=1

[() cos +() sin ] (1.27)



where   0, and , , for  = 1  , are independent random variables with

 (0 1).

... richer model, (Rice noise)

 ( ) =
X
=1

() cos [()+Φ()] (1.28)

where ’s, ’s, ’s and Φ’s are r.v.’s with known statistics



... random Fourier series

 ( ) =
∞X

=1

()
 (1.29)

1 2  are mutually uncorrelated, zero-mean r.v.’s

hi= 0 hi=
(

 2
 if  = 
0 if  6= 

(1.30)

For  ( ) to represent e ( ) adequately (in mean-square sense) ∀ ∈ [−]

4 sin2


4
¿ 1 (1.31)

Random processes whose values 1, ..., , at respective positions 1, ..., , are independent

r.v.’s (recall Bernoulli and binomial processes)

(1  ;1  ) =
Y
=1

1(;) (1.32)



A process is strict-sense stationary (SSS) if all -order distributions  are invariant w.r.t.

arbitrary shifts 0, and for any ’s

(1  ;1  ) = (1  ;1+
0  +

0) (1.33)

A process is wide-sense stationary (WSS) if its mean is constant and its finite-valued autocor-

relation depends only on  = 2−1

h()i=  h(1)(1+)i = () ∞ (1.34)

Note: WSS is much less restrictive than SSS.

Note: If r.p. is specified via 1st and 2nd moments, then WSS =⇒ SSS; e.g. Gaussian

Note: r.p.’s can be classified as stationary versus evolutionary.



normalized autocovariance (correlation coefficient)

(1 2) ≡ (1 2) =
(1 2)

12
 (1.35)

Example: Gaussian curve

() = exp[−222]; (1.36)

Example: exponential curve

() = exp[−] (1.37)

Defines spectral density () of () as its Fourier transform

() =
1

2

Z ∞
−∞

()− () =
Z ∞
−∞

() (1.38)



Note: For a real-valued r.p.:

() =
Z ∞
−∞

() cos() (1.39)



By Bochner’s Theorem: every non-negative definite function has a non-negative
Fourier transform, i.e. () ≥ 0 A simple application

() =

(
0 ||  
0 

 (1.40)

But, since

() =
1

2

Z ∞
−∞

()− =
0
2

Z 

−
cos() =

0

sin() (1.41)

model (1.41) is inadmissible.

For a WSS r.p. − in analogy to random processes parametrized by time − one
can define a correlation length (or correlation radius)

 =
1

2

Z ∞
0

() =
Z ∞
0

() (1.42)



For Gaussian autocovariance:  = (2)−12; for exponential  = .

Note: the integral may diverge, e.g. () = [1 + 22]−,   12.

Note: In practice, autocovariances and spectra are often estimated from single
realizations of r.p.’s; this is based on the ergodic assumption.



Local averaging : given any (), consider a new r.p. with realization ()

( ) =
1

2

Z +

−
( 

0)0 (1.43)

Note: autocorrelations are changed with .

1.1.2 Vector random fields

Example: Return to paper properties, and also report strength max

=⇒vector random variable"


max

#
: Ω→ R () =  max() =  (1.44)



Figure 1.2: A sample realization of random process max, its autocorrelation,
and spectrum.



=⇒vector random process"


max

#
: Ω× → R2 ( ) =  max( ) =  (1.45)

In general, Z : Ω× → R Z( ) = z.

Complete specification via n-point probability distributions

(1  ;1  ) = {(1) ≤ 1  () ≤ } (1.46)

which again are subject to Kolmogorov conditions. But, such a description is very difficult to

achieve in practice. =⇒ focus on WSS fields.

... joint covariance

(1 2) = h[(1)− h(1)i][(2)−
D
(2)

E
]i (1.47)



=⇒correlation coefficient

(1 2) =
(1 2)


 (1.48)

for  = , autocovariance; else crosscovariance

Setting 1 = 2 = , get covariance matrix

() =
()


 (1.49)

Example of paper: , max, strain-to-failure max, tensile energy absorption


=⇒ Z = [ max max ].



1.2 Mechanics problems on 1D random fields

In continuum mechanics often consider a superposition

( ) = hi+ 0( )

0
®
= 0 ∀  (1.50)

and assume ¿




À
=




hi

¿




À
=




hi  (1.51)

... generalize to vector random processes and random fields.

Note: In general, (2.2)2 is not true, e.g. in thermodynamics.



1.2.1 Propagation of surface waves along random boundaries

... random surface profile  of half-space {−∞ ≤   ≤ ∞;  ≥  ( )}¯̄̄̄




¯̄̄̄
¿ 1

¯̄̄̄




¯̄̄̄
¿ 1 (1.52)

and for n =(  ) ⊥ surface

 = −



 ¿ 1  = 1 ' 1  =

h
1− ()2

i12
 (1.53)

Take  as a zero-mean WSS r.p. modeled by random Fourier series.

Recall: unperturbed, harmonic (−) Rayleigh wave, propagating in :

 = −  = − (1.54)



where

2 = 2 − 2 2 =
2

+ 2

2 = 2 − 2 2 =
2



(1.55)

Approximate zero-traction b.c.’s by those at mean surface  = 0:

1 − 0 =  = 0 1 − 0 =  = 0 (1.56)

where each field, say,  = 1 (scattered) + 0 (perturbed). Note

 ( ) =  ( 0) +




¯̄̄̄
¯
=0

 (1.57)

and rejecting higher order terms

0 =
0


¯̄̄̄
¯
=0

 − 0



0 = −

0


¯̄̄̄
=0

 (1.58)



where 0, 
0
 are unperturbed wave (2.3).

Introduce a system of plane waves { ; = 1 2 }

 = −  = − (1.59)

with  = +  for ∀, so that  =
q
 − 2,  =

q
 − 2. Hence

1 =
∞X
=1


1()
 =

∞X
=1


h
−2 +

³
2 − 2

´i
 1 = 

(1.60)



1.2.2 Fracture of brittle micro-beams

Randomness of micro-beams Linear elastic fracture mechanics involves stiff-
ness  and surface energy .

=⇒ pair [ ]. Given a randomly micro-heterogeneous material structure,
admit a vector r.p. [ ].

Note: randomness of  arises when the Representative Volume Element (RVE)
cannot be safely assumed, i.e. when micro-beam is so thin that its lateral
dimension  (defining its ) is comparable to crystal size .

=⇒ consider scaling from a Statistical Volume Element (SVE) to RVE,.



(a) (b)

Figure 1.3: (a) Fracturing of a micro-beam of thickness  off a substrate,
where a Statistical Volume Element imposed by the random microstructure
characterized by a scale  is shown. (b) Potential energy Π (h1i) (thick
line) and its scatter shown by a parabolic wedge (thin lines), summed with the
surface energy hΓi = 2 hi (thick line) and its scatter shown by a straight
wedge (thin lines), results in Π (h1i) + hΓi (thick line) and having scatter
shown by a wider parabolic wedge (thin lines). Dashed region indicates the
range of a random critical crack length  ( ()).



Strain energy release rate in random beam (Griffith, 1921)

 =



− 


= 2 (1.61)

where  = crack surface area formed,  =work performed by applied loads,
 =elastic strain energy,  =energy to form a unit of new surface.

Dead-loading: force is not random, but kinematic variable is, =⇒

() =
Z 

0

2

2
  =  (1.62)

By Clapeyron’s theorem,  is a random integral

( ()) =
Z 

0

2

2( )
 (1.63)

=⇒

h()i =
*Z 

0

2

2 [hi+0( )]

+
 (1.64)



In conventional formulation of deterministic fracture mechanics, random mi-
croscale heterogeneities 0( ) are disregarded, and (2.14) is evaluated from
hi

( hi) =
Z 

0

2

2 hi
 (1.65)

This corresponds to replacing
D
L−1

E−1
by hLi

What about h()i versus ( hi), and h()i versus (hi)?

Note: r.p.  is positive-valued almost surely =⇒ Jensen’s inequality

1

hi
≤
¿
1



À
 (1.66)



=⇒

( hi ) =
Z 

0

2

2 hi
≤
Z 

0

2

2

¿
1



À
 =

*Z 

0

2

2( )

+
= h()i

(1.67)

... hypothetical material specified by hi, versus properly ensemble averaged
random material

( hi) = ( hi)


h()i =  h()i


 (1.68)

noting

( hi) |=0= 0 h()i |=0= 0 (1.69)

=⇒

( hi) ≤ h()i  (1.70)



Note: can generalize to Timoshenko beams

Note: as mesoscale  grows, 0 → 0. =⇒
D
−1

E−1 → hi, recover
deterministic fracture mechanics.

Fixed-grip: displacement is non-random, but load is =⇒

 = −
 ()


= − 

2




 (1.71)

and  can be computed by direct ensemble averaging of .

Mixed-loading conditions:

 ≤  ≤  (1.72)



Stochastic crack stability ... in any particular micro-beam ((); ∈ Ω),

under general loading:
 0 : unstable equilibrium

2 (Π () + Γ ())

2
= 0 : neutral equilibrium

 0 : stable equilibrium

potential energy Π (h1i) and its scatter, summed with surface energy hΓi =
2 hi and its scatter, results in Π (h1i) + hΓi having scatter shown by a
parabolic wedge

⇒ random critical crack length  ( ()) has wide scatter!





Note:

1. Potential energy Π () is sensitive to fluctuations in , which die out as
→∞ ( beam thickness,  grain size)

2. Surface energy Γ () is sensitive to fluctuations in , but randomness in 
is independent of 

⇒ cracking of micro-beams is more sensitive to randomness of elastic moduli
than cracking of large plates

3. Can show that under dead-load conditions:

and small random fluctuations in  and  lead to relatively much stronger (!)
fluctuations in 



=⇒ Even weak random perturbation in properties may be very significant!

Recall

L() =  versus
D
L−1

E−1 hi =  (1.73)

Note: hi 6=  obtained by straightforward averaging: hLidet =  , as done
in deterministic continuum mechanics.

... other aspects of mechanics of random micro-beams (Altus, 2001; Altus &
Givli, 2003; Beran, 1998; Givli & Altus, 2003).



1.3 Elements of 2D and 3D random fields

1.3.1 Random scalar and vector fields

... return to paper: 2D random field of [ max max ]





random scalar field in  dimensions

 : Ω× → R (x) =  (1.74)

random vector field in  dimensions

Z : Ω× → R Z(x) = z (1.75)

Note: complete specification via n-point probability distributions

(z1  z;x1 x) = {Z(x1) ≤ z1 Z(x) ≤ z} (1.76)

... correlation function (x1x2) has properties:

(a) (x1x2) ≥ 0,



(b) (x1x2) = (x1x2),

(c) |(x1x2)|2 ≤ (x1x1)(x2x2).

Focus on WSS random fields

h(x)i =  h(x1)(x1 + x)i = (x) ∞ (1.77)

... correlation (and covariance) functions

(x1x2) = h[(x1)− h(x1)i][(x2)−
D
(x2)

E
]i (1.78)

correlation coefficient

(x1x2) =
(x1x2)

(x1)(x2)
 (1.79)



=⇒for WSS field

(x) =
(x)

(x)(x)
 (1.80)

one-point special case

(0) =
(0)

(0)(0)
 (1.81)

Isotropic random fields

(x) = ()  ≡ |x| = √ (1.82)



Note: An analogue of isotropy property for random fields in 1D is: () =
(−),  = 1 − 2.

Note: As before, can define a correlation length (radius).

Two classes of isotropic random fields:

() = exp[−]   0 0   ≤ 2; (1.83)

() = [1 +]−1   0 0   ≤ 2 (1.84)

Note: For an isotropic field on R,  () ≥ −1.



Note: A valid isotropic () in R2 is always a valid isotropic  () in R1,
where 2  1. But, the converse is not true as this ’tent’ example shows

() =

(
2(1− || ) 0 ≤ ||  

0 ||  
valid in R1, but not in R2.

(1.85)

=⇒May construct new, more complex correlation functions. Note:

(i) a convex combination of p.d.f.’s is a p.d.f.

(ii) a convex combination of correlation fn’s is a correlation fn

(iii) a finite product of correlation fn’s is a correlation fn



() =
exp[−]
1 +

   0 0    ≤ 2; (1.86)

() = exp[−
X

=1

]   0 0   ≤ 2  = 1  ; (1.87)

() = [−
Y

=1

(1+
)]   0 0   ≤ 2  = 1 2 ; (1.88)

() = exp[−](cosh) +(2−)  0 0   ≤ 2  = 1  ;

(1.89)



() =
(cosh)

1 +
 +(2−)  0 0   ≤ 2  = 1   (1.90)

Example: paper properties -  () is estimated from stationarity and er-
godicity

(0) ≡

⎡⎢⎢⎢⎢⎣

max maxmax 

max maxmax maxmax
 max max 

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1
043 1 
010 056 1
014 090 069 1

⎤⎥⎥⎥⎦ 
(1.91)



(i) cross-correlations between  and inelastic parameters max max  are
weak, although we note that max is greater than max or ;

(ii) cross-correlations between max max, and  are v. similar.

Anisotropy of correlation function

... introduce a transformation

 (x) = [1(x) 1(x)] x = (1  ) (1.92)

of R into R. If  of  is 6= 0, there exists −1. Let |x| denote a norm
in R and ||y|| a norm in R after  . If a WSS field  has a property that
|x| = ||y|| implies

(x) = (y) (1.93)



Figure 1.4: A map (from the top) of stiffness, strength, strain-to-failure, and
tensile energy absorption for a 25×8 array of 7”×1” specimens, after (DiMillo
and Ostoja-Starzewski, 1998); paper web provided by Champion Corp.



then  is called a WSS quasi-isotropic random field.

... ellipsoidal structure with  a positive-definite quadratic form

||y||2 =
X

=1

 (1.94)

Consider (||y||). Then the Jacobian of  is the determinant of matrix .
For example, the Gaussian autocovariance of a random process on R1 can now
be generalized as

(y) = exp[−
X

=1

] (1.95)

Another model of a quasi-isotropic field on R is

 (x) = [11 ] all   0 (1.96)



Note: Distinguish the anisotropy in terms of correlation function from the
(local) anisotropy of realizations.

Note: Models of correlation function for isotropic random fields (3.9) carry over
to quasi-isotropic fields provided we replace  by

¯̄̄¯̄̄
−1(y)

¯̄̄¯̄̄
. =⇒

() = exp[−
¯̄̄¯̄̄
−1(y)

¯̄̄¯̄̄
]   0 0   ≤ 2 (1.97)

Fully separable correlation function

(x) = (1)(2)() (1.98)

partially separable structure, as in

(x) = (1 2)() (1.99)

... common model in fluid mechanics: (x ) = (x)().



Local averaging:

(x) =
1

2

Z


(x
0)x0 (1.100)

Note: If applied to a stiffness C (resp., compliance S) tensor field, it yields a
Voigt-type (Reuss-type) estimate/bound of the stiffness (compliance) for the
domain .

... local averaging is a simple operation, but it may yield very misleading
estimates of actual material properties.

...  plays the role of a mesoscale, but mechanics is unaccounted for !

... which  to choose? ... what is the -dependence!



1.3.2 Random tensor fields

Consider z = Z(x) to be a first-rank tensor:

z0 =  · z (1.101)

where  is a matrix giving x0 =  · x upon rotation.

For an th-rank tensor we have

z0 =  · z (1.102)

where  appears  times.

=⇒ define a random tensor field of first-rank to be wide-sense stationary (WSS)
and isotropic whenever the mean hZ(x)i and the correlation  (x) do not



change when subjected to arbitrary shifts and when transforming by rotation in
(3.31) according to 

Z0
®
=  · hZi  


 (x

0) =  ·  (x) (1.103)

with x transformed into x0 also according to (3.30).

Note: This may be extended to strict-sense stationarity (SSS) by requiring
(3.30) to hold for all -order distributions , not just for two moments.

In (3.33) we employ the correlation coefficient



 (x1x2) =

h[Θ(x1)− hΘ(x1)i][Θ(x2)−
D
Θ(x2)

E
]i

(x1)(x2)
 (1.104)

... same thing as (3.6), but notation  is superior to  for tensors.



The WSS property means that, for any pair (x1x2),



 (x1x2) = 


 (x) x = |x1 − x2|  (1.105)

Isotropy =⇒



 (x) = 


 ()  ≡ |x| = √ (1.106)

Robertson (Proc. Camb. Phil. Soc., 1940):  in 3D admits this representa-
tion:



 (x) = 1 () +2 ()  (1.107)

where ’s are real-valued functions of  = |x| s.t.

1 = 111 = 122 1 +2 = 133 (1.108)

and  = . Here 1 = correlation  (x) between  (x1) and  (x2)

in a coordinate system centered at x1 and directed to x2.



Second-rank random tensor fields

In general, Z is a random tensor field in  dimensions if

Z : Ω× → R Z(x) = z ∀x ∈  (1.109)

Note: for  = 2,  = 4, while, for  = 3,  = 9, etc. The concept of a
random tensor field may be applied to any tensor field in continuum mechanics.

The normalized correlation function of, say, a second-rank tensor field is

(x1x2) =
h[(x1)−

D
(x1)

E
][(x2)− h(x2)i]i

(x1)(x2)
 (1.110)

where (x1) and (x2) are the standard deviations of the pair [ (x1) 
 (x2)] at respective points. It follows from the tensor property of z, that 




is a fourth-rank tensor.



Special case: Z = anti-plane stiffness tensor C (≡ ) of a hyperelastic
material (or a conductivity tensor). Then, ∀x ∈  of every C () of the
random field

 =  (1.111)

implying these symmetries

 =  =   (1.112)

Robertson (1940):  in 3D admits this representation

() = 4 ()  +6 ()
h
 + 

i
+ [5 ()−6 ()]

h
 +  +  + 

i
+[3 ()−4 ()]

h
 + 

i
+ [1 () +2 ()− 23 ()− 45 ()]

(1.113)



where ’s are s.t.

1 = 11111 2 = 12222 3 = 11122
4 = 12233 5 = 11212 6 = 12323

 (1.114)

and satisfy

4 + 26 −2 = 0 (1.115)

and  = . Here 1 = correlation between  (x1) and  (x2) in a
coordinate system centered at x1 and directed to x2.

Note: while a second-rank tensor in 3D generally has 9 independent compo-
nents, the assumption of isotropy of its realizations reduces the number of
parameters of its correlation function to 6.



Fourth-rank tensor fields

Z is a random tensor field in  dimensions if

Z : Ω× → R Z(x) = z ∀x ∈  (1.116)

Note: for  = 2,  = 16, while, for  = 3,  = 81. For example, in classical
(non-micropolar) hyperelasticity, where Z = stiffness tensor,  = 21. As an
example, if we were able to measure not just the uniaxial stiffness () but the
entire stiffness tensor (C = ) at each and every point x of a realization
of random medium, we would deal with a random field of stiffness tensor.

Focus on Z being WSS. =⇒



 (x1x2) =

h[(x1)−
D
(x1)

E
][(x2)−

D
(x2)

E
]i

(x1)(x2)


(1.117)



where (x1) and (x2) are the standard deviations of [ (x1),

 (x2)]. Tensor property of Z =⇒ 

 is an eighth-rank tensor.

Z is WSS =⇒



 (x1x2) = 


 (x) (1.118)

where x = x2 − x1.

If the correlation function is isotropic,



 (x) = 


 () (1.119)

Example: Z = random stiffness tensor C in a linear hyperelastic material.
Then, at ∀x ∈  of every C ()

 =  =  =  (1.120)



so that



 = 


 = 


 = 


 = 


 = 


 = 


 (1.121)

Lomakin (1965, 1970):  () in 3D admits this representation



 () = 12 +13 () 

+14 ()
h
 +  +  + 

i
+15 ()

h
 +  +  + 

i
(1.122)

Concepts of separable structure, local averaging, ... apply, in appropriately
generalized forms, to random fourth-rank tensor fields.



1.4 Mechanics problems on 2D and 3D random fields

4.1 Mean field equations of random materials

Recall from Preface: u is governed by Lu = f . Use decompositions

u = hui+ u0 L = hLi+ L0 (1.123)

First averaging the original equation, and then subtract the result from it, to
obtain an equation for u0

hLiu0 + ( −  )L0u0 = −L0 hui  (1.124)

Here  is a so-called projection, basically an averaging operation.

Solving for u0,



(hLi−M) hui = f  (1.125)

where

M =
¿
L0
h
hLi+ ( −  )L0

i−1L0À = −L0 hui (1.126)

stands for the so-called mass operator ; −1 indicates an inversion.

Fishman & McCoy (1981); consider heat conduction problem in a medium
described by a random field

n
 (x) ; ∈ Ω

o
, under a source term  (x)

and boundary temperature field  0 (x), both slowly varying on macroscale.



Thus, ∀ () ∈ B
 =  (x) x ∈B

= (x) x ∈B
 (x) =  0 (x) x ∈ B

(1.127)

Note:  (x) =
D


E
+0

 (x), so that, upon averaging,

hi =  (x) x ∈B
hi=

D


E D

E
+
D
0
 (x)

0


E
x ∈B

h (x)i =  0 (x) x ∈ B
(1.128)

From the equations governing the fluctuationsD
0
E

= 0 x ∈B

0=
D


E
 0 + ( −  )0

 (x)
0
 +0

 (x)
D
 0
E

x ∈B
 0 (x) = 0 x ∈ B

(1.129)



derive an analogD


E
 0 + ( −  )

h
0
 (x)

0


i

= −0

 (x)
D
 0
E
 (1.130)

=⇒ constitutive equation for average fields is

h (x)i = ∗
D

E
+
Z
B

h


³
xx0

´ D


³
x0
´Ei


x0 (1.131)

Note: Effective constitutive response has a non-local character; this result
carries over to random elastic and inelastic materials.



4.2 Mean field equations of turbulent media

Recall

 = 0 ̇ =  ̇ =  −   (1.132)

Assuming (2.2) to hold for all the fields, find

hi = 0  ḣi = ∗ ̇∗ = ∗
D

E
− ∗  (1.133)

with Reynolds stress (= )

∗ =  − 
D
0

0


E
 (1.134)

∗ = hi+ 1
2

D
0

0


E
(1.135)

∗ =  −
D
0

0


E
+ 

¿µ
0 +

1

2
0

0


¶
0

À
(1.136)



i.e. effective heat flux = original heat flux + rate of work of fluctuating stresses
on  ’s surface +stochastic energy convection through that surface.

Note: Average field hi satisfies the same continuity equation as . Diver-
gence of Reynolds stress may be interpreted as the force density on the fluid
due to turbulent fluctuations. Reynolds stress also appears when analyzing the
Euler or N-S equations.

Note: While, formally, hi = ensemble average, in practice, it is sometimes
also thought of as a spatial average over some length scale, or a temporal
average. Accordingly, v0 is then interpreted not as a statistical one, but a
spatial or temporal one. One then works with separation of scales: time scale
of variation of hvi is much larger than that of v0. The equivalence between
such averages in statistical turbulence is an open problem, but is justified in
the more established field of equilibrium statistical mechanics by the ergodic
theorem.



1.5 Ergodicity

1.5.1 Basic considerations

Can one determine probabilistic characteristics (moments, distributions, ...) of
a random process or field in terms of a set of values {(1)  ()} observed
over just one realization ( )  ∈ R?

If yes, have a possibility of treating () at hand as ‘typical’ (in a certain
sense...) of the whole random field , recall measurements of paper properties.

=⇒ ergodic property (or ergodicity), but in mathematics these terms have a
narrower meaning (be careful).



=⇒ ergodicity in the mean (or, r.p. ismean-ergodic) means that any realization
()  ∈ Ω is sufficient to get the ensemble average h()i at any  from
its spatial average () for any  ∈ Ω taken over a sufficiently large interval:

() ≡ lim
→∞

1

2

Z 

−
( ) =

Z
Ω
( ) () ≡ h()i  (1.137)

Computation of (5.1)

LHS of (5.1) may be evaluated only with some accuracy, due to finite scale
discretization of measurements and impossibility of carrying out the limit →
∞. In practice:

() ≡ 1



X
=1

( ) (1.138)



and

h()i ≡ 1



X
=1

( ) (1.139)



Conditions for (5.1) to hold

Assuming the limit in (5.1) exists, its value (), depends on . Under what
conditions does it equal the constant ?

=⇒ ergodic theorems; the process is mean-ergodic iff its autocovariance is such
that

lim
→∞

1

42

Z 

−

Z 

−
(1 2)12 = 0 (1.140)

Prove this by noting that 2 of r.v.  () = (2)
−1 R

−( ) is

2 =
D
| − |2

E
=

1

42

Z 

−

Z 

−
(1 2)12 (1.141)

where  = h ()i.



Note: A process may be ergodic without being stationary.



If  is WSS =⇒ r.p. is mean-ergodic if its  () =  ()− 2 is s.t.

lim
→∞

1

2

Z 2
−2

()

Ã
1− ||

2

!
 = 0 (1.142)

One gets sufficiency here if
R∞
−∞() ∞.

There also are other kinds of ergodicity: e.g. correlation-ergodic, distribution-
ergodic, e.g.

( ) ≡ lim→∞
1
2

R
−( 1 + )( 1)1 =R

Ω( 1 + )( 1) () ≡ h( 1 + )( 1)i 
(1.143)

which, in fact, was the basis for computation of autocorrelations in Figs. 1.1
and 1.2.



Under what conditions does the limit () in (5.1) exist? This is known as
‘ergodic problem’ in mathematics, having roots in statistical mechanics, where
one is interested in estimating system properties from a single trajectory over a
relatively very long period of time. Since a trajectory occurs in a phase space,
this leads us to the concept of an ergodic flow in the phase space, i.e. a flow for
which the integral with respect to a time parameter  converges to a random
variable [()

lim
→∞

1



Z
( ) = [() (1.144)

More generally, for r.p. () can define a flow in phase (or state) space of
 as a transformation mapping this space onto itself, whereby any event  is
transformed into some other one,  , via operator  ():

→  =  () (1.145)



=⇒ a set function () transforms as

()→ () = [ ()] (1.146)

In classical statistical mechanics one focuses on Hamiltonian flows (total system
energy = ), which are measure-preserving in the sense that

 () =  () (1.147)

In (5.8)  and  stand for an initial set and a set after the transformation
(5.6). The counterpart of measure in physics is the density  (  ) in phase
space ( ;  = 1  ); this needed to pass from statistical mechanics to
continuum thermodynamics.



Note: a Hamiltonian system is measure-preserving because of Liouville’s theo-
rem (expressed in terms of convective derivative being zero)




=




+




̇ +




̇ = 0 (1.148)

Recall here Hamilton’s equations

̇ =



̇ = −




 (1.149)



Consider three basic types of measure-preserving flows in phase space. Let the
set  modeling the state of system evolve while keeping another set  fixed.

Case (a): moves in a periodic fashion through phase space, visiting just a
fraction of it without ever entering other regions (e.g. harmonic oscillator)

 ( ) =
2

2
+
1

2
2 (1.150)

Case (b):  is only slowly altered during its motion, while it sweeps the entire
space if observed for a sufficiently long (infinite) time =⇒ ergodic flow. G.D.
Birkhoff (1931): every invariant set has measure 0 or 1, i.e. no trajectory
can be confined to a finite portion of phase space because it has to wander
(ergodos in Greek) through all of it. Another way to express this: trajectory is
not sensitive to initial conditions.



Figure 1.5: Three types of flow in phase space: (a) periodic, non-ergodic; (b)
ergodic, non-mixing; (c) ergodic, mixing; after Balescu (1975). In each case, a
square-shaped set  is shown.



Case (c):  not only sweeps the entire space, but its shape is being altered
during its motion so as to fill the entire space through a multitude of growing
branches, subbranches, and so on =⇒ (strong) mixing flow :

...  diffuses from small blob, and tends to a ‘uniformly mixed situation’:
volume fraction of  in  equals the initial volume fraction of  in Ω:

lim
→∞ ( ∩) =  () () (1.151)

Note: mixing =⇒ ergodicity, but ∃ ergodic flows that are not mixing.

... weak mixing defined via

lim
→∞

1



Z 

0
[ ( ∩)−  () ()]  = 0 (1.152)



...an even weaker mixing

lim
→∞

1



Z 

0
[ ( ∩)]  =  () () (1.153)

Note: all these are various extensions of the independence property [ ( ∩
) =  () ()] when the time evolution is involved.

Take a random field , defined on R,  = 1  3. By analogy to (5.9),
consider a family of shift transformations

()→ () = [
()
 ] (1.154)

where


()
 (1    ) = (1   +   ) (1.155)



Here () =  ∈ Ω, each of which takes a set  ⊂ Ω into a set () composed
of functions of  shifted by  at their th parameter . If r.f. is SSS, then
these transformations are measure preserving

 () =  (
()
 ) (1.156)

Set  is called invariant if, ∀ and , sets  and () differ at most by a set
of  -measure zero. =⇒ every invariant set has either  = 0 or 1.



1.6 Maximum entropy method

6.1 Cracks in plates with holes

Al-Ostaz & Jasiuk (1997) investigated fracture response in tension of elastic-brittle (epoxy) and

ductile (aluminum) plates. Macroscopically identical specimens were tested under the same

conditions, and each displayed a different crack pattern. Nominally identical plates (8.25 x

33.02 x 0.38cm), epoxy (PSM-5). Each plate: same non-periodic distribution of 31 circular

holes (diameter=1") from a hard-core r.f.; subjected to tensile loading in y at 0.03cm/s initially,

and then decreased to ~0.0017cm/s.

Non-uniqueness of experimental results!

Note from combinatorics: that there exists a large number of geometrically
acceptable (plausible) crack paths cutting the specimen across having very



Figure 1.6: Schematic plot of final crack patterns superposed from seven epoxy
specimens (in various colors) under the same uniaxial vertical tensile loading
conditions, obtained experimentally; after (Al-Ostaz & Jasiuk, 1997).



similar energy values. =⇒ minute material and geometric imperfections decide
which crack path will actually take place in a particular specimen.

Material imperfections arise from the intrinsic nature of materials which are all
heterogeneous at a microscopic level.

Geometric imperfections include roughness of holes’ surfaces and microscopic
surface damage from drilling.



6.2 Disorder and information entropy

Compute crack paths using FE or spring networks...

But, which crack path should actually be used as a guidance in fine tuning the
computational mechanics model?

Note: FE in mechanics of random media (∀body () ∈ B) based on

min [ ()− ] (1.157)

... to investigate effects of microscale randomness, need to carry out a finite
(necessarily limited!) number of studies on a subset Ω ⊂ Ω.



Figure 1.7: Two variational principle philosophies in mechanics of random media, and their

roles in establishing a connection between microscale and macroscale responses. Left column

illustrates a maximum entropy approach where the microscale probabilities are determined

from the macroscale statements and observations, which represent constraints. The right

column illustrates a (usually) much more familiar variational method of deterministic mechanics

extended to a representative subset of heterogeneous specimens of a random medium.



Another possibility: maximum entropy method (MEM): for ensemble Ω (on
which r.v.  = {(); ∈ Ω} is defined), maximize the possible disorder
expressed via information entropy

 () = h− ln  ()i = −
Z ∞
−∞

 () ln  ()  (1.158)

subject to condition that  = h ()i of  known functions  () of  are
given.

For discrete-type r.v. (with values  = 1  ),

 () = h− ln  ()i = −
X

=1

 () ln  ()  (1.159)

one may show that the probability density of  is given by

 () =  exp [−11 ()− −  ()] (1.160)



Note: The entropy definition (6.2) represents the measure of uncertainty, or
lack of information, for a continuous valued random variable.

Note: The conditions involved in finding the solution  () represent our limited
knowledge of possible constraints. If all the constraints were known, we would
get exactly same solution as by conducting a deterministic mechanics study
-by- according to the right column =⇒ no philosophical conflict between
both methods. Usually, however, the knowledge of all the constraints is not
there, or their introduction into the analysis is prohibitively complex. MEM is
complementary to conventional variational principles.



Cracks in plates with holes via MEM

The MEM outlined in the left column of Fig. 6.2 is ideally suited to study
the microscale material randomness, as expressed by the surface energy density
fluctuations. We proceed in the following steps:

(i) Fracture occurs at the expense of dissipated energy (), and the fracture
path has a length (). The two quantities can be computed from Fig. 6.1.

(ii) Calculate surface energy per unit length () = ()(). Let us note
here that  (and hence its probability density ()) is now assessed on the
mesoscale , which is the mean hole spacing, rather than on, say, a molecular
scale.



(iii) Given the results for  specimens, we get {();1  }, each of
probability

{1} =  = {} =
1


(1.161)

(iv) Compute moments hi 
D
2
E

D
3
E
  to get, according to (6.4),

() =  exp
h
−1 hi− 2

D
2
E
− 3

D
3
E
− 

i
(1.162)

subject to


R∞
0 exp

h
−1 − 2

2 − 3
3 − 

i
 = 1


R∞
0  exp

h
−1 − 2

2 − 3
3 − 

i
 = hi


R∞
0 2 exp

h
−1 − 2

2 − 3
3 − 

i
 =

D
2
E



(1.163)



(v) This basic model can be improved to account for:

- orientation of cracks with respect to the macroscopic loading direction;

- local crack (hole-hole) interactions;

- further crack (hole-hole) interactions; etc.

(vi) With () one can predict the probability of occurrence of any other crack
path.

Note: The MEM provides a closure method for many nonlinear problems of
stochastic mechanics − e.g., fragmentation under dynamic impact, turbulence,
nonlinear random vibration, effective response of random materials, contact
forces in granular media...



2 Mesoscale random fields

From discrete to continuum random fields

... random medium is a set of deterministic media: B = {();  ∈ Ω}.

e.g. anti-plane elasticity of a matrix-inclusion composite (() =  ∪ )
with locally isotropic phases of properties () (matrix) and () (inclusion).
The most complete description of this two-phase microstructure is given in
terms of an indicator (or characteristic) function

(x) =

(
1  x ∈

0  x ∈
or  : Ω× R2→ {0 1} (2.1)

=⇒ local property at any point

(x) = (x)
() + [1− (x)]

() (2.2)



Figure 2.1: The setup of random fields: from a piecewise-constant realization
of a composite to two approximating continua at a finite mesoscale.

=⇒ r.f. with discrete-valued realizations for x: {(x); ∈ Ωx ∈R2}.
=⇒ discrete-valued r.f. with a continuous parameter

C : Ω× R2→ {I() I()} or {C(x); ∈ Ωx ∈R2} (2.3)

-dependent hierarchy of bounds =⇒ ∀x in the material and ∀, two bounding



estimates of C may be introduced: C
 and C


 ≡ (S )

−1. =⇒ two
mesoscale r.f.’s (continuous-valued with continuous parameter)

C
 : Ω× R2→ R3 S : Ω× R2→ R3 (2.4)

=⇒ approximate description of the composite material via two sets: {C
(x); ∈

Ωx ∈R2} and {S (x); ∈ Ωx ∈R2} =⇒ two alternate inputs to field
equation for global response on a smoothing mesoscale 

[(x)] = 0 (2.5)

... in fact three approximating random fields

B = {(); ∈ Ω} B = {(); ∈ Ω} B = {(); ∈ Ω}
(2.6)

=⇒ no unique way of setting up a continuum r.f.!



Figure 2.2: Sampling of the mesoscale property (trace of apparent tensor )
of a disk-matrix composite via windows of different sizes. The beta distribution
gives a practical approximation for the entire range of window sizes, showing
four cases: the pointwise limit of eq. (1.7); the scale 1 and fit 1; the scale
2 and fit 2; and the scale ∞ and the causal distribution ∞.



Scale dependence via beta distribution

Assume the statistics of  to be homogeneous, isotropic. =⇒

[(x)] =  ()
h
(x)− ()

i
+  ()

h
(x)− ()

i
 (2.7)

Note: of all classical p.d.f.’s, beta is the most convenient one to describe this
scale effect:


h
   () ()

i
=

−1(1− )−1

[() − ()]( )
for ()    () 

(2.8)
where

[ ] =
Γ(+ )

Γ()Γ()
for ()    () (2.9)

with Γ being the gamma function.



3 Second-order properties of mesoscale r.f.’s

Start from equilibrium eqn

 =  (3.1)

and take both fields as superpositions:

 (x) =
D

E
+ 0 (x)  (x) = hi+  0 (x)  (3.2)

Multiplying  at x1 by  at x2, and ensemble averaging,

2

 (x1x2)

12
=

2h0 (x1)0 (x2)i
12

= h 0 (x1)  0 (x2)i =  (x1x2) 

(3.3)



where 
 = correlation f’n of σ0,  (x1x2) = correlation f’n of  0.

In the case of

 =  (3.4)

obtain

2
 (x1x2)

12
= 

 (x1x2)  (3.5)

Can generalize to micropolar bodies..., etc.



3.1 Universal properties of mesoscale bounds

Consider four types of microstructures (Phys. Rev., 2000):

- matrix-needle composites with stiff needles

- multi-phase Poisson-Voronoi mosaics, Fig. 8.1(a),

- matrix-disk composites with circular or elliptical disks,

- superpositions of the latter with matrix-disk composites, Fig. 8.2(b).

For C
 and S


 (for any ()) can compute 2nd invariants


() =

q
(11 − 22)24 + 212 

 () =
q
(11 − 22)24 + 212

(3.6)



(a) (b)

Figure 3.1: Two planar random microstructures: (a) four-phase Poisson-
Voronoi mosaics; (b) superposition of a matrix-disk composite with a matrix-
needle composite.



=⇒ two random invariants: {
(); ∈ Ω} or {

 (); ∈ Ω}. =⇒
coefficient of variation of each of these invariants

 
 =

(
)

(
)
  

 =
(

 )

(
 )
 (3.7)

Find: for any   1, these equal ~055± 01 irrespective of:

(a) window size ;

(b) b.c.’s applied (Dirichlet or Neumann);

(c) contrasts () ( = 2  4), and inclusion’s shape;

(d) volume fraction  () of any phase  = 1  4, providing its conductivity
is not 0 or ∞.



Figure 3 2: Graphs of the correlation coefficient (r) ≡   (r) of the



=⇒ a universal nature of  
 and 


 for planar random media generated

from Poisson point patterns.

Correlation structure of mesoscale r.f.’s of stiffness

For composite having SSS statistics of properties, mesoscale r.f. C is SSS:


(x1x2) = 

(r) r = x1 − x2 (3.8)

Q: For a composite having also an isotropic statistics of its properties, is C
field isotropic in terms of its correlation function?


(r)

?
= 

(|r|) (3.9)

Note from computations of anti-plane mesoscale stiffnesses of two systems:
binomial fields on square lattices and disk-matrix composites:



(i) autocovariance 1111 is not isotropic as there is a stronger correlation in
1 than in 2;

(ii) autocovariance 1212 is isotropic;

(iii) crosscovariance 1112 is practically zero;

(iv) crosscovariance 1122 attains, at the origin, a maximum value of ˜075
rather than 10 as might intuitively be expected;

(v) practically identical plots of 
are obtained under the assumption of

uniform strain [(e), (f)].



4 Does there exist a locally isotropic, smooth

elastic material?

The correlation theory of random fields implies 1212 () = 0, which is possible
only for 12 = 0 everywhere, i.e. for mesoscale  = 0, discrete medium
description - non-smooth!

=⇒ cannot assume smooth C (x ) =  (x ) I

=⇒ In the model

ε = S(x): σ σ = C(x): ε S(x) = C−1(x) (4.1)

σ and ε are fields on a hypothetical, unspecified RVE / SVE of a random
medium.



=⇒ 4th rank, isotropic tensor random field is also unjustified

 =
1

(x)
[(1+(x))−(x)]  ∈ Ω x ∈  ⊂ R (4.2)



5 Stochastic finite elements for elastic media

Consider a (scalar) problem of torsion of a bar made of a two-phase microstruc-
ture (e.g. duplex steel)

[(x)] +  = 0 x ∈ ()
 = 0 x ∈ ()

(5.1)

 = stress function, C(x) (≡ (x)) corresponds to one particular
realization () (of volume  ) of B

Note: lower and upper bounds on global response of() are obtained, respec-
tively, from two dual energy principles: the minimum potential energy principle

inf
∈1

0( )

1

2

Z

ηC()η −

1

2

Z

 (5.2)



and, the minimum complementary energy principle

inf
∈1

0( )

1

2

Z

ξS()ξ ∀ξ ∈  = {ξ ∈ (( )2|∇ · ξ+ = 0} (5.3)

Here C() and S() are stiffness and compliance tensor fields on mesoscale
 (set by the size  of the finite element relative to the grain size ), while η
and ξ stand for ∇ and C()η, respectively.

=⇒ two algebraic problems

[K()] {Φ} = {}  ∈ Ω (5.4)

where [K()] = global stiffness matrix, and

[L()] {} = {Λ}  ∈ Ω (5.5)

where [L()] = global flexibility matrix. Here Φ and  are the respective
vector solutions; see the first reference above for all the details.



... these two energy principles ensure a monotonic convergence of the lower
and upper bounds of the energy norm from below and above, respectively,

kk =
1

2

Z

()  ∈ Ω (5.6)

provided (i) we have a homogeneous material and (ii) the mesh resolution
 → 0

This is the classical limit of infinitesimal finite elements solving a deterministic
continuum problem without identifying any microstructure.

In a heterogeneous material, the tendency of global FE methods to converge
with  decreasing is hindered by the fact that the mesoscale (i.e. apparent)
responses C() and S() tend to diverge as  decreases.

i.e. no separation of scales!



Example: torsion of a duplex-steel bar (bi-percolating)

Note: competition of two opposing trends:

(i) global responses tend to converge as  decreases;

(ii) mesoscale responses, serving as input to (i), computed resp. from essential
and natural boundary conditions, are well defined via micromechanics but tend
to diverge as  decreases.

(iii) ... SVE = ‘mesoscale finite element’



Figure 5.1: A two-phase material with a Voronoi mosaic microgeometry of a
total 104,858 black and white cells, at volume fraction 50% each.



Figure 5.2: Behavior of the energy norm (3.6) with respect to a sequence of
self-accommodating finite element meshes, in terms of the increasing finite
element resolution, for: (a) a homogeneous material domain contrast = 1, and
(b) for contrast  = 10, (c) same domain for  = 100, and (d) same domain
for  = 1000. Computational micromechanics solutions taking account entire
microstructure of are also shown.



Figure 5.3: Hierarchies of bounds
D
C
()

E
and

D
S ()

E−1
for the two-phase

microstructure of Fig. 6 at volume fraction and contrast  = 10; five data sets
are shown.
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2

three scales:

microscale: average size of grain d
(microstructure)

mesoscale: L
if not RVE, then 

inhomogeneous continuum

macroscale: Lmacro



3
separation of scales d << L << Lmacro

does not always hold!

three scales:

microscale: average size of grain d
(microstructure)

mesoscale: L
if not RVE, then 

inhomogeneous continuum

macroscale: Lmacro



4
separation of scales d << L << Lmacro

does not always hold!

three scales:

microscale: average size of grain d
(microstructure, non-fractal)

mesoscale: L
if not RVE, then 

inhomogeneous continuum

macroscale: Lmacro
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Three ways for randomness 
to enter a problem in solid mechanics

L = field (differential) operator

• via forcing:

• via boundary conditions: on

• via field operator:

fLu =

)(ωu B∂

)(ωfLu =

fuL =)(ω

ω∈Ω
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1. Finite-size-scaling and convergence of Statistical Volume 
Element (SVE) to Representative Volume Element (RVE)

2. Problems/challenges w/o separation of scales
- stochastic boundary value probems
- random fields, stochastic finite elements
- wavefronts in random media
- fracture mechanics of micro-beams
- shape optimization in presence of microscale material randomness
- …

Outline



7

mesoscale: dL /=δL

d

How large must the mesoscale domain be to qualify as RVE?
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Definition of RVE [Hill, 1963]

• RVE is structurally entirely typical of the whole mixture on average
n

• contains a sufficient number of inclusions for the apparent overall 
moduli to be effectively independent of the surface values of traction 
and displacement, as long as these values are ‘macroscopically uniform’         

n
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Definition of RVE [Hill, 1963]

• RVE is structurally entirely typical of the whole mixture on average
need spatially homogeneous and ergodic statistics 

• contains a sufficient number of inclusions for the apparent overall 
moduli to be effectively independent of the surface values of traction 
and displacement, as long as these values are ‘macroscopically uniform’         

need a mesoscale for both bvp’s

⇒

⇒
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Hill (-Mandel) condition: Equivalence of energetic and mechanical 
definitions of Hooke’s law:

• displacement-traction b.c.
(mixed-orthogonal)

xu ⋅= ε

• traction (Neumann) b.c. nt ⋅= σ

0)()( =⋅−⋅⋅− xunt εσ

• displacement (Dirichlet) b.c.

Uniform boundary conditions:

εσεσ :: = ⇔

δ∂∈∀ Bx

0 )()( =⋅−⋅⋅−∫∂ dSxunt
Bδ

εσ
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stiff inclusions in soft matrix
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soft inclusions in stiff matrix
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Linear elastic random composites

000 ::
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Unrestricted b.c.:

,xu j
0
iji ε= δBx ∂∈

Restricted b.c.:

,xu j
0
ij

r
i ε= 2

' n,...,2,1s,Bx =∂∈           δ

δ'

δ
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randomly placed elliptical inclusions
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randomly placed elliptical inclusions
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randomly placed needles or cracks

[Mech. Mater., 1999]
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In two-phase media, beta p.d.f approximates scale change for 
entire range of mesoscales: from SVE to RVE

[IJSS, 1998]
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In-plane conductivity
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…universal property on mesoscale

• For each of mesoscale 2nd rank tensors, consider 2nd invariants 

• Take coefficients of variation of these invariants
• These equal ~0.55, irrespective of:

(a) mesoscale
(b) the b.c.’s (uniform Dirichlet or Neumann)
(c) the contrasts, and the inclusion’s shape
(d) the volume fraction of any phase

[Phys. Rev. B, 2000]
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Mesoscale bounds on trCeff for a 
random two-phase square lattice 
at contrasts 10, 100, 1000
at δ = 4 and 10
Hashin-Shtrikman bounds (-------)
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Finite-size scaling in random chessboards

]exp[ emeC −−= δδ ]exp[ nmnS −= δδ

14.08.3 α=em 59.04.2 α=nm

α

α = contrast
a 

[Phys. Rev. B, 1996]

up to δ =1000



microscale

mesoscale

macroscale
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Continuum random 
tensor field

),('),( xCCxC ωω +=

can it be assumed isotropic?

… can assume E and v to be 
smooth functions?
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Continuum random 
tensor field

),('),( xCCxC ωω +=

can it be assumed isotropic?

… can assume E and v to be 
smooth functions?

No!
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Continuum random 
tensor field

),('),( xCCxC ωω +=

can it be assumed isotropic?

… can assume E and v to be 
smooth functions?

No!

Applications:

random field models

stochastic finite elements

waves in random media 

FGM …
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Observe

• spatial inhomogeneity (gradient) prevents local isotropy of 
approximating smooth continuum

• assuming any smooth realization of random tensor field to be locally 
isotropic is in contradiction with the admissible correlation structure of 
random tensor fields, stationary and isotropic in wide sense
[proof via representation theory of tensor fields, holds in mean-square]

• must admit anisotropy of C’ tensor
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Hill condition: Equivalence of energetic and mechanical definitions of     
Darcy’s law:

0))(( ,,, =−−⇔= ∫
∂

dSnUnUxppUpUp
B

iiiijjiiii

xpp 

⋅∇= ii xpp ,=

nUnU 







⋅=⋅ 0 iiii nUnU 0=
B∂

0)()( 0 =⋅=⋅⋅⋅∇− nUnUxpp 









0))(( 0, =−− nUnUxpp iiiii

(i)

on
(ii)

or

(iii)

or

or

11

2
1

2

~~~~)
~~(

~~~~~~ −−
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Thermal expansion of random composites

∫∫∫ −−=
St

ii
V

ii
V

dSutdVuFAdV
V

U 1

T
cCA vijijklijijkl

2
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2
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dsutGdv
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31Neumann b.c. Dirichlet b.c.
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Composite of Aluminum(Matrix) 
and Steel(Inclusion), 40%
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[Networks & Heterogeneous Media, 2006]
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quartets of 
Legendre transformations

classical

stochastic

[J. Non-Equilib. Thermodyn., 2002]
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Thermomechanics of random media
(generalizing formulation of H. Ziegler)

orthogonality in space of forces

orthogonality in space of velocities

Thermodynamics with internal variables
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Mesoscale bounds in finite elasticity 
of random composites

ternary phase rubber composite leg muscle tissue

P.R. Hornsby & K. Premphet, J. Appl. Polym.Sci. 70, 587 (1998)
L.E. Eldsberg et al., J. Rehab. Res. Develop. 37, (2000)
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Finite elasticity of random media

Hill condition:

Kinematic uniform b.c.

Static uniform b.c.

Mixed uniform b.c.

FPFP :: = [ ] 0)()(1

00

=⋅−−⋅⋅−∫
∂V

dS
V

X1FuNPt

0V∂∈∀X,X1Fu ⋅−= ][ 0

0V∂∈∀X,0 NPt ⋅=

0V∂∈∀X,0)][()( 00 =⋅−−⋅⋅− X1FuNPt

⇒
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Minimum potential energy:

P assumes local minimum for actual solution uij provided

Under kinematic b.c:

dSUtdVUUP i
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Q assumes a local minimum for the actual solution uij provided
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[S.J. Lee & R.T. Shield, “Variational principles in finite elastostatics”, ZAMP, 1980]
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Scale-dependent hierarchies in finite elasticity:

)1,(),(),( ),( 0000 FFFF Ψ≤′Ψ≤Ψ≤∆Ψ δδ

)1,(),(),( ),( 0000 PPPP QQQQ ≤′≤≤∆ δδ

∆<<′< δδ1

Lower bound:

Upper bound:

for

[Proc. Roy. Soc. Lond. A; J. Elast., 2006]

∫=Ψ
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dVXωψω ),(:)( 000 PFPP ωΨ−=Q
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Numerical simulations

δ=1 δ=2 δ=4 δ=8 δ=16
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Elementary bounds

Voigt upper bound:

2211 Ψ+Ψ=Ψ ccV

OgdenhookeanNeoV µµµ 65.035.0 += −

?=Rµ

d
V δΨ≥Ψ )(F

δ'

δ

Reuss lower bound:
t

R
** )( δΨ≥Ψ P
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Energy Bounds
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Mixed Boundary Conditions
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Mesh dependence (40% inclusions)

material properties:

Ei/Em = 5

Poisson ratio is the same

αi/αm = 10

16=
dx

dinclusion

8=
dx

dinclusion

32=
dx

dinclusion
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Table 1 Mismatch and discrepancy (D) values on mesoscale

Mismatch D [%]

Linear elasticity 2.28

Linear thermoelasticity 5.51

Plasticity 2.29

Nonlinear elasticity 5.86

Flow in porous media 27
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first-order 
homogenization scheme

second-order 
homogenization scheme

[Forest & Sab, Jasiuk & O-S, Kuznetsova & Geers, Onck …]
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• Convergence to RVE depends on:
- Elastic versus inelastic microstructure

faster slower
- mismatch in properties
- 2-D or 3-D
- microscale geometries (disks versus ellipses, spatial clustering…)

• Convergence to RVE in linear elastic microstructures: 
- mesoscale moduli of stiff matrix w. soft inclusions converge

(much) more slowly to RVE than those of 
soft matrix w. stiff inclusions

- convergence to RVE is slowest in anti-plane, faster in 
in-plane, and fastest in 3-D elasticity

• In problems w/o separation of scales need to work with random 
fields and solve stochastic b.v.p. (e.g. via stochastic FE), …

Microstructural Randomness and Scaling in Mechanics of Materials,
Taylor & Francis/CRC Modern Mech. Math. Series, 2007.
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Coupled scale and b.c. effects in random media:

linear elasticity:
random: Huet (1990, …), O-S (1989, …), Sab (1992), Terada & Kikuchi (2002), 

Forest & Jeulin (2003) …
periodic: Hollister & Kikuchi (1992), Pecullan, Gibiansky & Torquato (1999)

Jiang, Jasiuk & O-S (2002, …) …

nonlinear elasticity: Hazanov (1999), …

viscoelasticity: Huet (1998)

elasto-plasticity: Jiang, O-S & Jasiuk (2001) 

rigid-perfect plasticity, elasto-plasticity

thermoelasticity: O-S

elasticity + damage



THANK YOU!
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paradigm of inhomogeneous continua: FGM

mesoscale property is anisotropic

bounded by Dirichlet and Neumann b.c.’s
[Acta Mater., 1996]
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Mesoscale random fields:
as a bridge from micro (nano) to macro scales
as a basis of stochastic finite elements (SFE)

[CMAME, 1999; Proc. Roy Soc. Lond. A, 1999]
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Torsion of a bar 
of square cross section with bi-percolating microstructure
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Mesoscale bounds:
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Mesoscale bounds:

Convergence of torsion solutions 
for a homogeneous bar:
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Optimal truss (Michell, 1904): 
a minimum-weight design of a 

planar truss that transmits a given 
load to a rigid foundation with axial 
stresses in all the bars: -σ₀ ≤ σ ≤ σ₀

n = # of nodes

Eff = V/ V(n)   efficiency

V = volume of Michell truss-like continuum

V(n) = volume of ‘finite’ truss

Solution found by solving a 
hyperbolic problem

Shape optimization
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Manufacturing of a truss
from a polycrystal

…as the mesh is refined, 

random noise in σ₀ grows



62

Truss made of ‘real’ material: 
a minimum-weight design in 

the presence of random strengths σ₀

n = # of nodes

Eff = V/ V(n) 

V = volume of Michell truss-like continuum

V(n) = volume of ‘finite’ truss

Material spatial randomness 
prevents the attainment of Eff = 1

As randomness in σ₀ grows, 
characteristics get more scattered

… beyond (d), characteristics intersect!

[Proc. Roy. Soc. Lond. A, 2003]
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Shape optimization of an elastic structure with minimum 

compliance, having a prescribed weight

Rigid foundation F
Force applied at A

Material = square mosaic with 
random stiffnesses:

)(')( ωω EEE +=
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homogeneous medium case

E = const

increasing 
randomness 
in stiffness

generally, compliance increases

but, for some realizations, 

the algorithm may find a lower 
compliance than in homogeneous 
medium case

[Struct. Multidiscipl. Optim. 2003]
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Conclusions

Studies of finite-size-scaling in random media allow
assessment of RVE size for:
• linear elasticity and conductivity (thermal, electrical, magnetic,…)
• physically nonlinear elasticity 
• viscoelasticity
• elasto-plasticity
• rigid-perfect plasticity
• finite elasticity
• thermoelasticity
• permeability
• …

These issues are critical where separation of scales is missing
• in micro- and nano-structured materials
• biological systems
• geophysical problems
• …
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(a) germ-grain fiber model (… fiber structures)

(b) hard-core Boolean random function (… cellular/biological tissues)

(c) dead leaves random tessellation of Poisson polygons 

(… randomly micro-layered systems)

(d) Boolean model of Poisson polygons 

(… tungsten-carbide [black] and cobalt [white])

Many complex microstructures may be modeled via 
mathematical morphology

(a) (b) (c) (d) 



THANK YOU!
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Mesoscale Bounds for Random Media - Inelastic

Martin Ostoja-Starzewski
Department of Mechanical Science & Engineering

also Institute for Condensed Matter Theory, and Beckman Institute
University of Illinois at Urbana-Champaign



2

Elasto-plastic random composite

Mesoscale (apparent) elasto-plastic response, 
under proportional monotonic loading, 
can be treated within the framework of deformation theory

… formally equivalent to physically nonlinear, 
small-deformation elasticity theory. 
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Minimum complementary energy principle
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Thermal expansion of random composites
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Elementary bounds

Voigt upper bound:
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Energy Bounds
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Composite of Aluminum(Matrix) 
and Steel(Inclusion), 40%
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Mixed Boundary Conditions
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[Scaling function, anisotropy and the size of RVE in elastic 
random polycrystals, J. Mech. Phys. Solids 2008]
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[Scaling function, anisotropy and the size of RVE in elastic 
random polycrystals, J. Mech. Phys. Solids 2008]
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[Scaling function, anisotropy and the size of RVE in elastic 
random polycrystals, J. Mech. Phys. Solids 2008]
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Can one grasp the entire anisotropy of a crystal via one number?

Zener index:

Chung & Buessem index:

Ledbetter & Migliori index:
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Mesoscale bounds in finite elasticity 
of random composites

ternary phase rubber composite leg muscle tissue

P.R. Hornsby & K. Premphet, J. Appl. Polym.Sci. 70, 587 (1998)
L.E. Eldsberg et al., J. Rehab. Res. Develop. 37, (2000)
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Finite elasticity of random media

Hill condition:

Kinematic uniform b.c.

Static uniform b.c.

Mixed uniform b.c.
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Finite elasticity of random media

Hill condition:

Kinematic uniform b.c.

Static uniform b.c.

Mixed uniform b.c.
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Minimum Potential Energy Theorem
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Introducing unrestricted and 
restricted boundary conditions, 
we obtain the following inequality:
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Computational Results: 
Material Models
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Scale-dependent hierarchies in finite elasticity:
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Numerical simulations
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Linear Thermoelasticity:

Thermodynamic Potential 
of the Mesoscale
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Functionally graded materials
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Random medium
B { ( ); }B ω ω= ∈Ω

A. Saharan, M. Ostoja-Starzewski and S. Koric, “Fractal geometric characterization of functionally 
graded materials,” ASCE J. Nanomech. Micromech., 2013. 
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Ti TiB

A. Saharan, M. Ostoja-Starzewski and S. Koric, “Fractal geometric characterization of functionally 
graded materials,” ASCE J. Nanomech. Micromech., 2013. 
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Ti TiB Ti TiB

A. Saharan, M. Ostoja-Starzewski and S. Koric, “Fractal geometric characterization of functionally 
graded materials,” ASCE J. Nanomech. Micromech., 2013. 
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Edge Plots
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Fineness: 100
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Edge Plots
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D ~ 1.7–1.8
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Fineness: 100



Mechanical formulation

50

• FGM: Ti-TiB
• Hill-Mandel condition:

• Uniform boundary conditions:
• Displacement B.C. :
• Traction B.C. :

Property Value Units

Young's modulus 104 GPa

Poisson’s ratio 0.3

Yield strength 482.633 MPa

Density 4512 Kg/mm3

Material properties of commercially pure Titanium (A70) at 
room temperature 

Property Value Units

Young's modulus 370 GPa

Poisson’s ratio 0.14

density 4630 Kg/mm3

Material properties of Titanium Monoboride (TiB) at room 
temperature 

εσεσ :: = ⇔ 0 )()( =⋅−⋅⋅−∫∂ dSxunt
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εσ

δ∂∈∀ Bx

xu ⋅= ε
nt ⋅= σ

Welsch, Boyer, Collings E.W. (1994), Larson (2008)  



2d FGM microstructures
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Homogenization procedure for 2d graded microstructures 



Stress-strain plots and fractal dimension (D)

52

Fineness: 100



Stress-strain plots and fractal dimension (D)
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Fineness: 100

D = 1.955 
(UKBC)

D = 1.784 
(USBC)



3d Functionally graded materials (FGM)

• Homogenization of functionally graded materials 
(FGM) in 3d carried out using Hill’s condition:

54



3d FGM microstructures
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Homogenization procedure for 3d graded microstructures 



Convergence of bounds (Ti-TiB)
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Welsch, Boyer, Collings E.W. (1994), Larson (2008)  

Material properties of commercially pure Titanium (A70) at 
room temperature 

Property Value Units

Young's modulus 370 GPa

Poisson’s ratio 0.14

Property Value Units

Young's modulus 104 GPa

Poisson’s ratio 0.3

Material properties of Titanium Monoboride (TiB) at room 
temperature 
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Material properties of commercially pure Titanium (A70) at 
room temperature 

Property Value Units

Young's modulus 370 GPa

Poisson’s ratio 0.14

Property Value Units

Young's modulus 104 GPa

Poisson’s ratio 0.3

Material properties of Titanium Monoboride (TiB) at room 
temperature 
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Welsch, Boyer, Collings E.W. (1994), Larson (2008)  

Material properties of commercially pure Titanium (A70) at 
room temperature 

Property Value Units

Young's modulus 370 GPa

Poisson’s ratio 0.14

Property Value Units

Young's modulus 104 GPa

Poisson’s ratio 0.3

Material properties of Titanium Monoboride (TiB) at room 
temperature 
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Welsch, Boyer, Collings E.W. (1994), Larson (2008)  

Material properties of commercially pure Titanium (A70) at 
room temperature 

Property Value Units

Young's modulus 370 GPa

Poisson’s ratio 0.14

Property Value Units

Young's modulus 104 GPa

Poisson’s ratio 0.3

Material properties of Titanium Monoboride (TiB) at room 
temperature 



Convergence of bounds (Cu-Ni)
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Wilfredo Montealegre Rubio et al., 2012 

Material properties of Copper

Property Value Units

Young's modulus 199.8 GPa

Poisson’s ratio 0.32

Property Value Units

Young's modulus 122.7 GPa

Poisson’s ratio 0.32

Material properties of Nickel
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Wilfredo Montealegre Rubio et al., 2012 

Material properties of Copper

Property Value Units

Young's modulus 199.8 GPa

Poisson’s ratio 0.32

Property Value Units

Young's modulus 122.7 GPa

Poisson’s ratio 0.32

Material properties of Nickel
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Wilfredo Montealegre Rubio et al., 2012 

Material properties of Copper

Property Value Units

Young's modulus 199.8 GPa

Poisson’s ratio 0.32

Property Value Units

Young's modulus 122.7 GPa

Poisson’s ratio 0.32

Material properties of Nickel



Convergence of bounds (Cu-Ni)

63

Wilfredo Montealegre Rubio et al., 2012 

Material properties of Copper

Property Value Units

Young's modulus 199.8 GPa

Poisson’s ratio 0.32

Property Value Units

Young's modulus 122.7 GPa

Poisson’s ratio 0.32

Material properties of Nickel



Results – scaling function

64



Results – scaling function
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• On the basis of the mean values of the 
normalized scaling function, the data 
was fitted using a ‘stretch exponential 
function.

• More material models need to be 
simulated to get a reliable fit of the 
normalized scaling function (g).

• Using g(δ), we can predict 
convergence the convergence of 
bounds for any material combinations 
of FGM type.
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Table 1 Mismatch and discrepancy (D) values on mesoscale

Mismatch D [%]

Linear elasticity 2.28

Linear thermoelasticity 5.51

Plasticity 2.29

Nonlinear elasticity 5.86

Flow in porous media 27

Comparison of scaling trends
( ) 2/ne

ne

RR
RR

D
δδ

δδ

+
−

=
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Thermomechanics of random media
(generalizing the formulation of H. Ziegler)

orthogonality in space of forces

orthogonality in space of velocities

Thermodynamics with internal variables
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quartets of 
Legendre transformations

classical
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quartets of 
Legendre transformations

classical

stochastic

[J. Non-Equilib. Thermodyn., 2002]
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•rigid-plastic
•elasto-plastic
•viscoelastic
•permeable
•poroelastic
•thermoelastic
•…



Hill-Mandel condition

quasi-static responses
•(non)linear (thermo)elastic
•rigid-plastic
•elasto-plastic
•viscoelastic
•permeable
•poroelastic
•thermoelastic
•…

dynamic responses



Hill-Mandel condition
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Hill-Mandel condition

quasi-static responses
•(non)linear (thermo)elastic
•rigid-plastic
•elasto-plastic
•viscoelastic
•permeable
•poroelastic
•thermoelastic
•…

dynamic responses

non-Cauchy materials
• Cosserat
• dynamic responses

formulation of tensor random fields
• one-point statistics
• scaling laws
• correlation structure
• …



74

Determine mesoscale properties from Hill-Mandel condition:
for dynamics of Cauchy materials

• displacement-traction b.c.
(mixed-orthogonal)

• traction (Neumann) b.c.

• displacement (Dirichlet) b.c.

Uniform boundary conditions:

⇔

δ∂∈∀ Bx

 i ki kt nσ=

( )( )  0i ki k i ij jt n u xσ ε− − =

( )( )1    ( ) 0i ki k i ij jS
t n u x dS k k

V
σ ε ⋅− − − + =∫ 

  ji ji ji jiσ ε σ ε= 

 i ij ju xε− 

⇒
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Determine mesoscale properties from Hill-Mandel condition:
for dynamics of Cosserat materials

Uniform boundary conditions:

( )( ) ( )( )1 1

    

 ,    ,   

                                                                        ( ) ( )

ji ji ji ji ji ji ji ji

i ki k i i j j i ki k i i j jV VS S

c c m m

t n u u x dS m n x dS

k k k k

τ γ τ γ µ κ µ κ

τ µ φ φ

⋅ ⋅

− + − =

− − + − − +∫ ∫

− + − +

   

 

 

 

0( )      and    ( )       i ki k i i ji jt n m m n Bτ µ= = + ∀ ∈∂x x x

( )1( )      and    ( )        
2i ki k i lji ji ji j jt n e x X Bτ φ α κ= = + − ∀ ∈∂x x x

 

0( )      and    ( )       i i ji j i ji jm m n u x Bµ ε= + = ∀ ∈∂x x x

( )1( )      and    ( )        
2i ji j i lji ji ji j ju x e x X Bε φ α κ= = + − ∀ ∈∂x x x

  

,      ,ji i j kji k ji i ju eγ φ κ φ= − = 

 

⇒
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Define: 

classical and micropolar kinetic energies

their volume averages

time rates of these averages

( ) ( )
( )

1 1 1
2

1 1 1
2

( )

( ) :

d d
c cdt V dt VV V

d
m mV dt VV V

k k dV dV

k k dV dV

ρ⋅

⋅

≡ =∫ ∫
≡ = ⋅∫ ∫ I w w

υ ⋅ υ

volume averages of rates of volume averaged kinetic energies

.
1
2

.
1
2

    

    

ic i i i

m ij i j i i

k u

k I w w w

ρυυ υ

φ

= ≡

= ≡

1

1

c cV V

m mV V

k k dV

k k dV

= ∫
= ∫

( )
( )

21 1 1 1 1
2

21 1 1 1 1
2

c c i i i i iV V V VV V V V

m m i i i i iV V V VV V V V

k k dV dV dV u u dV

k k dV dV w w dV dV

ρυ ρυυ ρ

ρφ ρ ρφφ

⋅

⋅

≡ = = ≡∫ ∫ ∫ ∫

≡ = = ≡∫ ∫ ∫ ∫
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[P. Trovalusci, “Particulate random composites homogenized as micropolar materials,” 
Meccanica 49, 2014]
[P. Trovalusci, “Scale-dependent homogenization of random composites as micropolar 
continua,” Europ. J. Mech./A: Solids 49, 2014]
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first-order 
homogenization scheme

second-order 
homogenization scheme

[Forest & Sab, Kuznetsova & Geers, Onck, Trovalusci, …]
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• Convergence to RVE depends on:
- Elastic versus inelastic microstructure

faster slower
- mismatch in properties
- 2d or 3d
- microscale geometries (disks versus ellipses, spatial clustering…)

• Convergence to RVE in linear elastic microstructures: 
- mesoscale moduli of stiff matrix w. soft inclusions converge

(much) more slowly to RVE than those of 
soft matrix w. stiff inclusions

- convergence to RVE is slowest in anti-plane, faster in 
in-plane, and fastest in 3-D elasticity

• In problems w/o separation of scales need to work with random 
fields and solve stochastic b.v.p. (e.g. via stochastic FE), …

Microstructural Randomness and Scaling in Mechanics of Materials,
Taylor & Francis/CRC Modern Mech. Math. Series, 2007.
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Coupled scale and b.c. effects in random media:

linear elasticity:
random: Huet (1990, …), O-S (1989, …), Sab (1992), Terada & Kikuchi (2002), 

Forest & Jeulin (2003) …
periodic: Hollister & Kikuchi (1992), Pecullan, Gibiansky & Torquato (1999)

Jiang, Jasiuk & O-S (2002, …) …

nonlinear elasticity: Hazanov (1999), …

viscoelasticity: Huet (1998)

elasto-plasticity: Jiang, O-S & Jasiuk (2001) 

rigid-perfect plasticity, elasto-plasticity

thermoelasticity: O-S

elasticity + damage



Viscoelastic random materials
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• Modified Hill-Mandel condition

• Time-dependent:

– Kinematic Uniform Boundary Condition (KUBC)

– Static Uniform Boundary Condition (SUBC)

82

[Huet, 1995]



mesoscale properties
• Time-domain properties:

• Frequency-domain properties:

83



scale dependent homogenization

• Viscoelastic minimum theorems [Huet, 1995, 1999]
– time domain properties

– frequency domain properties

84



computational procedure

• Material representation (Prony series)
– isotropic linear viscoelastic phases

• Finite element analysis
– perfect bonding between interfaces
– quasi-static loading 
– small strain, plane stress 

85

Type E v

Mat 1 Elastic 60 0.3

Mat 2 Viscoelastic 30 0.3 0.9 0.25 0.25

)1(1)(
1

i
t

ertr i

N

i
R

τ−

=

−−= ∑
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Hierarchies of mesoscale bounds

87

[Hazanov, 1996; Huet, 1999]

𝛿𝛿 ↑



Scaling from SVE to RVE 
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Scaling from SVE to RVE 
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4

1
4

( 1.0s) 7.889

( 1.0s) 3.810
4.079

C t MPa

S t MPa
MPa

δ

δ

=

−
=

= =

= =

∆ =



Scaling from SVE to RVE 
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8

1
8

( 1.0s) 6.815

( 1.0s) 4.382
2.433

C t MPa

S t MPa
MPa

δ

δ

=

−
=

= =

= =

∆ =



Scaling from SVE to RVE 
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16

1
16

( 1.0s) 5.951

( 1.0s) 4.667
1.284

C t MPa

S t MPa
MPa

δ

δ

=

−
=

= =

= =

∆ =



Scaling from SVE to RVE 
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32

1
32

( 1.0s) 5.594

( 1.0s) 4.889
0.705

C t MPa

S t MPa
MPa

δ

δ

=

−
=

= =

= =

∆ =

[Mech. Res. Comm, 2015]



Scaling from SVE to RVE 

93

• discrepancy in viscoelastic mesoscale 
bounds is time dependent

• convergence rate is slower than in the 
analogous problem with elasticity

• viscoelasticity requires larger mesoscale 
to homogenize SVE to RVE
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[Proc. Roy. Soc. A, 2016]



Frequency – dependent mesoscale bounds 

• complex shear modulus
absolute value phase angle
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Frequency – dependent mesoscale bounds 

• complex bulk modulus
absolute value phase angle

96
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• VE mesoscale bounds are developed in 
a similar fashion as those in elasticity at 
each single frequency

• Convergence of mesoscale bounds 
depends on loading frequency

• Load frequency determines the physical 
properties of VE phase, or more 
fundamentally, the mismatch between 
component phases
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• Simulations on planar random checkerboard for:

– wide range of loading frequencies (from 0.05 Hz to 50Hz)
– many different materials combinations (VE-Elastic, Elastic-Elastic, VE-VE)
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Conclude…

• Mesoscale bounds provide monotonically convergent bounds on 
RVE response of viscoelastic composites

• Viscoelastic composite generally requires larger domain to 
homogenize to within the same error than the elastic composite, to 
capture the long time and full frequency range behavior

• Normalized complex scaling function tracks the characteristic of 
microstructure and predicts the mesoscale behavior for any 
combinations of micro-constituents’ properties

• Analogous scalings have been established in elastic and inelastic 
random microstructures [Adv. Appl. Mech., 2016]
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Random Field Models and Stochastic FE

Martin Ostoja-Starzewski
Department of Mechanical Science & Engineering

also Institute for Condensed Matter Theory, and Beckman Institute
University of Illinois at Urbana-Champaign



2

three scales:

microscale: average size of grain d
(microstructure)

mesoscale: L
if not RVE, then 

inhomogeneous continuum

macroscale: Lmacro



3
separation of scales d << L << Lmacro

does not always hold!

three scales:

microscale: average size of grain d
(microstructure)

mesoscale: L
if not RVE, then 

inhomogeneous continuum

macroscale: Lmacro



4
separation of scales d << L << Lmacro

does not always hold!

three scales:

microscale: average size of grain d
(microstructure, non-fractal)

mesoscale: L
if not RVE, then 

inhomogeneous continuum

macroscale: Lmacro
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Three ways for randomness 
to enter a problem in solid mechanics

L = field (differential) operator

• via forcing:

• via boundary conditions: on

• via field operator:

fLu =

)(ωu B∂

)(ωfLu =

fuL =)(ω

ω∈Ω
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Navier equation of linear elasticity (homogeneous, isotropic)

, ,( ) 0i jj j ij iu u fµ µ λ+ + + =

Beltrami-Michell equations of compatibility

, , , , ,
1 0

1 1ij kk kk ij i j j i ij k kf f fνσ σ δ
ν ν

+ + + + =
+ −

Navier-Stokes equation

, , ,
1

i i j j i i i jjv v v f p v
t

µ
ρ ρ

∂
+ = − +

∂
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Wave equation in media with RF of mass density

Hyperbolic equation in media with vector RF (ρ,E)

Assume E=const stochastic Helmholtz equation

          
     

⇒

…popular model in stochastic PDE literature
Not very physical
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Wave equation in media with RF of mass density

Hyperbolic equation in media with vector RF (ρ,E)

Assume E=const stochastic Helmholtz equation

          
     

⇒

…very popular model in stochastic PDE literature
Not very physical!
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Recall finite-size scaling (in random chessboards)

]exp[ emeC −−= δδ ]exp[ nmnS −= δδ

14.08.3 α=em 59.04.2 α=nm

α

α = contrast
a 

[Phys. Rev. B, 1996]

up to δ =1000



10

Mesoscale random fields:
as a bridge from micro (nano) to macro scales
as a basis of stochastic finite elements (SFE)

[CMAME, 1999; Proc. Roy Soc. Lond. A, 1999]
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Torsion of a bar 
of square cross section with bi-percolating microstructure
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Mesoscale bounds:
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Mesoscale bounds:

Convergence of torsion solutions 
for a homogeneous bar:
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Torsion of a bar 
of square cross section
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Torsion of a bar 
of square cross section
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Torsion of a bar 
of square cross section
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Torsion of a bar 
of square cross section
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Convergence of torsion solutions 
for a homogeneous bar:

0U∂ =

Torsion of a bar 
of square cross section

64
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Convergence of torsion solutions 
for a homogeneous bar:

0U∂ =

Torsion of a bar 
of square cross section

64

( )  
e

T
D dVω = ⋅∫K B C B⋅

( )  
e

T
D dVω = ⋅∫L B S B⋅ ⇒

⇒
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Torsion of a bar 
of square cross section with bi-percolating microstructure
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Torsion of a bar 
of square cross section with bi-percolating microstructure
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Torsion of a bar 
of square cross section with bi-percolating microstructure
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Torsion of a bar 
of square cross section with bi-percolating microstructure
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Mesoscale bounds for heterogeneous bar:
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Mesoscale bounds for heterogeneous bar:

Convergence of torsion solutions for 
homogeneous bar:
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Continuum tensor random field (RF) ),('),( xCCxC ωω +=

Can it be assumed isotropic (E,v ) and 
smooth?  

Can assume a unique tensor RF with 
anisotropic realizations?  

Can do local averaging of tensor RF 
for input to stochastic finite elements 
(SFE)?  

Can assume correlation functions of 
tensor RF w/o reference to 
micromechanics?  
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Continuum tensor random field (RF) ),('),( xCCxC ωω +=

Can it be assumed isotropic (E,v ) and 
smooth?  No

Can assume a unique tensor RF with 
anisotropic realizations?  No

Can do local averaging of tensor RF 
for input to stochastic finite elements 
(SFE)?  No

Can assume correlation functions of 
tensor RF w/o reference to 
micromechanics?  No
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Continuum tensor random field (RF) ),('),( xCCxC ωω +=

Can it be assumed isotropic (E,v ) and 
smooth?  No

Can assume a unique tensor RF with 
anisotropic realizations?  No

Can do local averaging of tensor RF 
for input to stochastic finite elements 
(SFE)?  No

Can assume correlation functions of 
tensor RF w/o reference to 
micromechanics?  No

Applications:
random field models
uncertainty quantification
waves in random media 
FGM …
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Fracture mechanics of micro-beams (nano-beams)

Recall strain-energy release rate:
conventionally:    

= material constant    
U = elastic strain energy of a 

homogeneous material

γ2=
∂
∂

−
∂
∂

=
A
U

A
WG

γ

…but, in a micro-beam

with a random microstructure:

γ = random field

U = random functional
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Stochastic crack stability:

equilbrium stable   0 
equilbrium neutral    0

equilbrium unstable    0  
   )(

2

2

>
=
<

∂
Γ+Π∂

A

…but, in a micro-beam 

with a random microstructure:

γ = random field

U = random functional

[J. Appl. Mech., 2004]
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Optimal truss (Michell, 1904): 
a minimum-weight design of a 

planar truss that transmits a given 
load to a rigid foundation with axial 
stresses in all the bars: -σ₀ ≤ σ ≤ σ₀

n = # of nodes

Eff = V/ V(n)   efficiency

V = volume of Michell truss-like continuum

V(n) = volume of ‘finite’ truss

Solution found by solving a 
hyperbolic problem

Shape optimization
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Manufacturing of a truss
from a polycrystal

…as the mesh is refined, 

random noise in σ₀ grows
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Truss made of ‘real’ material: 
a minimum-weight design in 

the presence of random strengths σ₀

n = # of nodes

Eff = V/ V(n) 

V = volume of Michell truss-like continuum

V(n) = volume of ‘finite’ truss

Material spatial randomness 
prevents the attainment of Eff = 1

As randomness in σ₀ grows, 
characteristics get more scattered

… beyond (d), characteristics intersect!

[Proc. Roy. Soc. Lond. A, 2003]
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Shape optimization of an elastic structure with minimum 

compliance, having a prescribed weight

Rigid foundation F
Force applied at A

Material = square mosaic with 
random stiffnesses:

)(')( ωω EEE +=
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homogeneous medium case

E = const

increasing 
randomness 
in stiffness

generally, compliance increases

but, for some realizations, 

the algorithm may find a lower 
compliance than in homogeneous 
medium case

[Struct. Multidiscipl. Optim. 2003]
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Strain energy release rate:

= material constant    
U = elastic strain energy of a 

homogeneous material

γ2=
∂
∂

−
∂
∂

=
A
U

A
WG

γ

Peeling a beam off a substrate

determine the critical crack length and stability
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crack stability:

equilbrium stable   0 
equilbrium neutral    0

equilbrium unstable    0  
   )(

2

2

>
=
<

∂
Γ+Π∂

A
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Strain energy release rate: γ2=
∂
∂

−
∂
∂

=
A
U

A
WG

Peeling a random beam off a substrate

γ = random field 

U = random functional

},);,({ Xxx ∈Ω∈ωωγ
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Dead-load conditions (for Euler-Bernoulli beam):

∫=
a

dx
IE

MaU
0

2

2
)(

where a = A/B, B = constant beam (crack) width

From Clapeyron’s theorem:

Note: randomness of E arises when Representative Volume 
Element (RVE) of deterministic continuum mechanics 
cannot be applied to a micro-beam

need Statistical Volume Element (SVE) 
micro-beam is random:

(wide-sense stationary) 

aB
UG
∂
∂

=

]},0[,);,({ axxE ∈Ω∈ωω
⇒
⇒
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U is a random integral

upon ensemble averaging:

In conventional formulation of deterministic fracture mechanics, random 
heterogeneities E′(x,ω) are disregarded ( )

? ?

⇒

⇒

∫=
a

dx
xIE

MEaU
0

2

),(2
))(,(

ω
ω

∫ +
=

a

dx
xEEI

MEaU
0

2

)],('[2
),(

ω

Ω∈∀ω

constEE ==

∫=
a

dx
EI

MEaU
0

2

2
),(

),(),( EaUEaU = ),(),( EaGEaG =
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Note: random field E is positive-valued almost surely

by Jensen's inequality⇒
EE
11

≤

),(
2

1
22

),(
0

2

0

2

0

2

EaUdx
IE

Mdx
EI

Mdx
EI

MEaU
aaa

==≤= ∫∫∫

⇒
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Define:

G in hypothetical material:

G properly averaged in random material:

with side conditions

aB
EaU

EaG
∂

∂
=

),(
),(

aB
EaU

EaG
∂

∂
=

),(
),(

0),0( =EU0),0( =EU

),(),( EaGEaG ≤⇒
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Define:

G in hypothetical material:

G properly averaged in random material:

with side conditions

G computed by replacing random micro-beam by a 
homogeneous one ( ) is lower than G computed 
with E taken honestly as a random field:

aB
EaU

EaG
∂

∂
=

),(
),(

aB
EaU

EaG
∂

∂
=

),(
),(

0),0( =EU0),0( =EU

ExE =),(ω

),(),( EaGEaG ≤⇒



46

Define:

stress intensity factor in hypothetical material:

stress intensity factor properly averaged in random material:

),( EaK

),( EaK

⇒ ),(),( EaKEaK ≤

),(),( EaJEaJ ≤⇒
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Remark 1:    With beam thickness L increasing, 

mesoscale L/d grows    

deterministic fracture mechanics is then recovered      

Remark 2:    Results carry over to Timoshenko beams:

⇒

0),(' →⇒ xE ω

),,(),,(),,(
1111* −−−−=≤ µµµ EaGEaGEaG

EE →
−− 11
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Fixed-grip conditions:

G can be computed by direct ensemble averaging of E (and μ)⇒

4

2

2
9

22 Ba
EIu

a
P

B
u

a
P

B
uG =

∂
∂−

=
∂
∂−

=
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Mixed-loading conditions:    

... both load and displacement vary during crack growth 

no explicit relation between the crack driving force and the 
change in elastic strain energy.    

… can get bounds from G under dead-load and G under fixed-grip:

⇒

Pmixedu GGG ≤≤
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Mixed-loading conditions:    

... both load and displacement vary during crack growth 

no explicit relation between the crack driving force and the 
change in elastic strain energy.    

… can get bounds from G under dead-load and G under fixed-grip:

Note: in mechanics of random media, when studying passage from 
SVE to RVE, energy-type inequalites are ordered in an inverse 
fashion: kinematic (resp. force) conditions provides upper (resp. 
lower) bound.

⇒

Pmixedu GGG ≤≤
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⇒

Mixed-loading conditions for Timoshenko beam

... four possibilities:    

P and M fixed:

P and θ fixed:

u and M fixed:

u and θ fixed:

MPG −

θ−PG

MuG −

θ−uG

MPPu GGG −−− ≤≤ θθ MPMuu GGG −−− ≤≤θ



THANK YOU!



Fractals in Mechanics

Martin Ostoja-Starzewski
Department of Mechanical Science & Engineering,

Institute for Condensed Matter Theory, and Beckman Institute
University of Illinois at Urbana-Champaign
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Definition: A fractal is "a rough or fragmented geometric shape that can 
be split into parts, each of which is (at least approximately … statistically) 
a reduced-size copy of the whole," a property called self-similarity. 

H.-O. Peitgen (2010): “if we talk about impact inside mathematics, and 
applications in the sciences, Benoît B. Mandelbrot is one of the most 
important figures of the last 50 years.”
…was often criticized for not being rigorous

Typical features of fractals:

• fine structure at arbitrarily small scales
• too irregular to be easily described by traditional Euclidean geometry
• self-similar (at least approximately or stochastically) (but not R1)
• has a Hausdorff dimension which is greater than its topological 

dimension (not space-filling objects in 3d)
• has a simple and recursive definition

2



Common techniques for generating fractals:

Escape-time fractals – via recurrence relation (Mandelbrot, Julia sets…)
Iterated function systems – via a fixed geometric replacement rule 

(Cantor set, Sierpiński carpet…)
Random fractals – via stochastic processes 

(Brownian motion/sheets, Lévy flight…)
Strange attractors – via chaos

Can fractals be generated by mechanics?
e.g. by elasto-inelastic transitions

Can we develop a continuum-type theory of fractal media?

Can we solve initial-boundary-value problems?
3



Fractal dimension

4

 Fractal dimension can be non-integer

 Fractal dimension represents the topological space-filling capacity of 
a geometric pattern

 Fractal dimension characterizes size scaling: D
rN r−∝

Fractal = rough or fragmented geometric 
shape that can be split into parts, each of 
which is a reduced-size copy of the whole. 



[B. Mandelbrot (1967). "How Long Is the Coast of Britain? Statistical 
Self-Similarity and Fractional Dimension," Science]
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─ Biological tissues: plants, brains, bones…
─ Geological systems: mountains, rivers, rocks…
─ Astronomy: Saturn’s rings, galaxy star-forming sites… 

6Example of a pre-fractal: a rock at the size of 1m and 0.1m



Saturn ring images from Cassini mission 
http://saturn.jpl.nasa.gov/photos/halloffame/

processed to capture ring edges
D ~ 1.63 - 1.78
[arXiv, 2012; SpringerPlus, 2015]

7

http://saturn.jpl.nasa.gov/photos/halloffame/


Sierpinski carpet

8

log(8) 1.89281...
log(3)

D = =

box counting 1.8927D 

Voyager 2, 1981



Common techniques for generating fractals:

Escape-time fractals – via recurrence relation (Mandelbrot, Julia sets…)
Iterated function systems – via a fixed geometric replacement rule 

(Cantor set, Sierpiński carpet…)
Random fractals – via stochastic processes 

(Brownian motion/sheets, Lévy flight…)
Strange attractors – via chaos

Can fractals be generated by mechanics?
e.g. by elasto-inelastic transitions

Can we develop a continuum-type theory of fractal porous media?

Can we solve initial-boundary-value problems?
9



Common techniques for generating fractals:

Escape-time fractals – via recurrence relation (Mandelbrot, Julia sets…)
Iterated function systems – via a fixed geometric replacement rule 

(Cantor set, Sierpiński carpet…)
Random fractals – via stochastic processes 

(Brownian motion/sheets, Lévy flight…)
Strange attractors – via chaos

Can fractals be generated by mechanics?
e.g. by elasto-inelastic transitions

Can we develop a continuum-type theory of fractal media?

Can we solve initial-boundary-value problems?
10



Oscillators, rods, beams with random/fractal properties 
under random/fractal loadings 

i.e., random/fractal loadings 
lacking explicit spectral densities

i.e., having fractal and Hurst effects
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Can grasp fractals and Hurst effect

roughness
heavy-tail behavior of covariance function

A random process Zx is statistically self-similar if it obeys
for some c, where H is Hurst parameter

• when stretched by some factor c in x dimension, Z looks the 
same if stretched by c-H in Z dimension

• most time series Zt look “flat” if stretched like this

H
x cxZ c Z−=
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fractals: those enchanting, self-similar things

Hurst effect: long-term memory (Joseph effect)
0 < H < 0.5: time series with negative autocorrelation (e.g. a decrease 
between values will likely be followed by an increase)

0.5 < H < 1: time series with positive autocorrelation (an increase 
between values followed by another increase)

H = 0.5: true random walk, where there is no preference for a 
decrease or increase following any particular value.



F(t) is zero-mean, Gaussian random process

14

covariance:

wide-sense stationary (WSS):

If for some 

then

1 2 1 2( , ) (| |)= −FC t t C t t

     
1dim(Graph ) min ,1 / 2
/ 2

α
α
 = = − 
 

D F

If for some 

then F(t) has long memory, with Hurst coefficient H = β/2
If , process is persistent
If , process is anti-persistent

(0,1),β ∈
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Transient response of a linear system:

to a wide-sense stationary random excitation F(t) with
• white noise, 
• Ornstein-Uhlenbeck (OU), 
• Matérn, 
• Cauchy, 
• Dagum covariance function

( ) ( ) ( )β γ′+ = +cX kX c t U t F t

( )X aX F t′ + = 0( ) ( ) ( )t
aX t h t Fτ τ τ= −∫ d

[ ( )] 0=E F t ⇒

⇒

[Shen, M. Ostoja-Starzewski & E. Porcu, “Responses of first-order 
dynamical systems to Matérn, Cauchy, or Dagum excitations,” Math. 
Mech. Complex Syst. (MEMOCS) 3(1), 27-41, 2015]



Variances of response X(t) under white noise and OU forcings. 

16

( ) : ( ), 0,δ= ≥C r r rWN

( ; ) : , 0,
2

ννν −= ≥rC r rOU e



F(t) is zero-mean, Gaussian random process

17

covariance:

wide-sense stationary (WSS): 1 2 1 2( , ) (| |)= −FC t t C t t



18

Gaussian white noise: 

Ornstein-Uhlenbeck: 

Matérn:

Cauchy:

Dagum:

( ) : ( ), 0,δ= ≥C r r rWN

( ; ) : , 0,
2

ννν −= ≥rC r rOU e

( ; ) : ( ), 0,ν
νν = ≥C r r r rM K

( ) /
( ; , ) : 1 1 ,

ε δδδ ε
−−= − +C r rD

( ) /
( ; , ) : 1 ,

η θθθ η
−

= +C r rC

0 2δ< ≤
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Variance of F(t):

Gaussian white noise:

Ornstein-Uhlenbeck: 
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Matérn:

     
     

     

Cauchy:

Dagum: no explicit formula



Variances under various forcings: Matérn, Cauchy (η=0.8, θ=1.6; 
η=0.4,θ=0.6; η=1.0,θ=1.0), Ornstein-Uhlenbeck (ν=10,000), white 
noise, and Dagum (ε=0.8,δ=1.6, ε=0.4,δ=0.6, ε=0.5,δ=1.0). 21

( ) : ( ), 0,δ= ≥C r r rWN

( ; ) : , 0,
2

ννν −= ≥rC r rOU e

( ; ) : ( ), 0,ν
νν = ≥C r r r rM K

( ) /
( ; , ) : 1 1

ε δδδ ε
−−= − +C r rD

( ) /
( ; , ) : 1 ,

η θθθ η
−

= +C r rC

0 2δ< ≤



Correlation function under OU forcings at variousν. 
22

( ; ) : , 0,
2

ννν −= ≥rC r rOU e



1st-order dynamical system’s correlation

23

( ) : ( ), 0,δ= ≥C r r rWN

( ; ) : , 0,
2

ννν −= ≥rC r rOU e

( ; ) : ( ), 0,ν
νν = ≥C r r r rM K

( ) /
( ; , ) : 1 1 ,

ε δδδ ε
−−= − +C r rD

( ) /
( ; , ) : 1 ,

η θθθ η
−

= +C r rC

0 2δ< ≤
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Correlation function of F(t):

Gaussian white noise: explicit formula

Ornstein-Uhlenbeck: explicit formula

Matérn: explicit formula - approximately Matérn

Cauchy: explicit formula – not Cauchy

Dagum: no explicit formula

2 1

1 2 1 2

1 2 1 2 1 1 2 2 1 20 0

( , ) [ ( ) ( )]

( , ) ( , ) ( ) ( )τ τ τ τ τ τ τ τ

=

= Ψ − −∫ ∫

X
t t

F a a

C t t E X t X t

C h t h t d d
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Transient response of a linear 2nd-order system:

to a wide-sense stationary random excitation F(t) with either 
• white noise, 
• Ornstein-Uhlenbeck (OU), 
• Matérn, 
• Cauchy, 
• or Dagum covariance function

     
     



Variances of response X(t) under white noise and OU forcings. 
The curve due to white noise overlaps with that due to OU 
process already for ν=500. 26

( ) : ( ), 0,δ= ≥C r r rWN

( ; ) : , 0,
2

ννν −= ≥rC r rOU e



Variance of X(t) under forcing by Gaussian process with Matérn 
covariance, with various ζ (= 0.025, 0.05, 0.1, 0.5, 1,5).

27

( ; ) : ( ), 0,ν
νν = ≥C r r r rM K



Variance of X(t) under the forcing of a Gaussian process with a Cauchy 
covariance with different values of ζ (0.025, 0.05, 0.1, 0.5, 1,5).

28

( ) /
( ; , ) : 1 ,

η θθθ η
−

= +C r rC



Variance of X(t) under Dagum forcing with different value of ζ.
29

( ) /
( ; , ) : 1 1 ,

ε δδδ ε
−−= − +C r rD

0 2δ< ≤



Correlations of X(t) with ζ=0.1 at t1=15 in underdamped 
structure under various forcings: Matérn, Cauchy, OU, 
white noise, and Dagum. 30

( ) : ( ), 0,δ= ≥C r r rWN

( ; ) : , 0,
2

ννν −= ≥rC r rOU e

( ; ) : ( ), 0,ν
νν = ≥C r r r rM K

( ) /
( ; , ) : 1 1 ,

ε δδδ ε
−−= − +C r rD

( ) /
( ; , ) : 1 ,

η θθθ η
−

= +C r rC

0 2δ< ≤



Variances of X(t) with ζ=0.1 in underdamped structure 
under various forcings: Matérn, Cauchy, OU, white noise, 
and Dagum. 31

( ) : ( ), 0,δ= ≥C r r rWN

( ; ) : , 0,
2

ννν −= ≥rC r rOU e

( ; ) : ( ), 0,ν
νν = ≥C r r r rM K

( ) /
( ; , ) : 1 1 ,

ε δδδ ε
−−= − +C r rD

( ) /
( ; , ) : 1 ,

η θθθ η
−

= +C r rC

0 2δ< ≤
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Randomly inhomogeneous rods and beams 
under random forcings:

     

[L. Shen, M. Ostoja-Starzewski and E. Porcu, “Elastic rods and 
shear beams with random field properties under random field 
loads: fractal and Hurst effects,” ASCE J. Eng. Mech., 2015.]



Correlation functions of X(t) at t =5 under white noise 
and OU ( ν=1,5,10,500 and 10,000) forcings. 
The curve due to white noise overlaps with those due to 
OU process for ν=10,000 and already for 500. 33



34

OBSERVE

1. Time-stationary random forcings of Cauchy and Dagum types lack 
explicit parametric spectral densities, yet they allow decoupling of the 
fractal dimension and Hurst effect. 

2. Working directly in time domain, find transient 2nd-order characteristics 
of response and, for comparison, also examine effects of Gaussian 
white noise, Ornstein-Uhlenbeck, and Matérn forcings. 

3. Given the same variance on input, the variance on output is strongest 
for Matérn, then Cauchy, then O-U, then white noise, and finally, 
Dagum forcing. 

4. If the excitation correlation function is Matérn, the correlation function 
of response is approximately Matérn. 

• … response due to Cauchy excitation is not Cauchy
• … cannot yet say whether response due to Dagum excitation (with its 

fractal and Hurst effects) is Dagum or not



Many brittle and/or ductile materials display fractal features: fracture surfaces, 
dislocation patterns, plastic ridges in ice fields, shear bands in rocks, phase 
transitions… 
J.D. Goddard and M. Sahimi, 1986, Phys. Rev. B 33.
M. Zaiser, K. Bay and P. Hahner, 1999, Acta Mater, 47.
M. Ostoja-Starzewski, 1990, Pure Appl. Geophys. 133.
A.N.B. Poliakov, H.J. Herrmann, Y.Y. Podladchikov and S. Roux, 1994, Fractals 2.
D. Sornette, 2004, Critical Phenomena in Natural Sciences, Springer.

A porous rock at R = 1m (a) and R = 0.1m (b); example of a pre-fractal.

[“From fractal media to continuum mechanics,” ZAMM 93, 1-29]



Common techniques for generating fractals:

Escape-time fractals – via recurrence relation (Mandelbrot, Julia sets…)
Iterated function systems – via a fixed geometric replacement rule 

(Cantor set, Sierpiński carpet…)
Random fractals – via stochastic processes 

(Brownian motion/sheets, Lévy flight…)
Strange attractors – via chaos

Can fractals be generated by mechanics?
e.g. by elasto-plasticity

Can we develop a continuum-type theory of fractal porous media?

Can we solve initial-boundary-value problems?
36



Mass in a fractal geometric structure W obeys a power law
[V.E. Tarasov, Ann. Phys., 2005]

Use a fractional integral to represent mass in a fractal region 

3 3( ) ( ) ( ) ( , )D
W W

m W dV c D dVρ ρ= =∫ ∫R R R

( ) ,     3Dm L L D∝ <



Mass in a fractal geometric structure W obeys a power law
[V.E. Tarasov, Ann. Phys., 2005]

Use a fractional integral to represent mass in a fractal W

3
3

3
2 (3 / 2)( , )

( / 2)

D
Dc D R

D

−
− Γ

=
Γ

R

3 3( ) ( ) ( ) ( , )D
W W

m W dV c D dVρ ρ= =∫ ∫R R R
3 Rin W ⊂ 3 Rin

integration and differentiation 
in non-integer-dimensional 

spaces

⇒

( ) ,     3Dm L L D∝ <



⇒

Riesz potential for a locally 
integrable function on

integration and differentiation 
in non-integer-dimensional 

spaces



Green-Gauss theorem

where

2
2

2
2( , )
( / 2)

D
dc D R

d

−
−=

Γ
R

( ) ( )( )1
3 2, ,d DW WdS c D R c d R dV−

∂ • = ∇•∫ ∫v n v

( ) ( )2 2 3 3, ,d DdS c d R dS dV c D R dV= =

⇒

surface fractal dimension of W mass fractal dimension of W

integration and differentiation 
in non-integer-dimensional 

spaces



Fractal continuity equation for W

Fractal linear and angular momentum equations

Fractional equation of energy balance

Fractional equation of 2nd law of thermodynamics (C-D inequality)

D
k k

D

d v
dt

ρ ρ  = − ∇ 
 

        D
k k l kl kl kl

D

d v f
dt

ρ ρ σ σ σ  = +∇ = 
 

( ) ,, , D
kl k l k k

D

d u c D d R v q
dt

ρ σ  = −∇ 
 

( ) ( ) ( ) ( )( )
,0 , , ,d di k k

i j ijij ij
D D D

T qd d dT s u c D d R
dt dt dt T

ρ σ β α
      ≤ = + −      

      



Fractal continuity equation for W

Fractal linear and angular momentum equations

Fractional equation of energy balance

Fractional equation of 2nd law of thermodynamics (C-D inequality)

non-fractal medium (D=3, d=2) recover conventional forms

D
k k

D

d v
dt

ρ ρ  = − ∇ 
 

        D
k k l kl kl kl

D

d v f
dt

ρ ρ σ σ σ  = +∇ = 
 

( ) ,, , D
kl k l k k

D

d u c D d R v q
dt

ρ σ  = −∇ 
 

( ) ( ) ( ) ( )( )
,0 , , ,d di k k

i j ijij ij
D D D

T qd d dT s u c D d R
dt dt dt T

ρ σ β α
      ≤ = + −      

      

⇒



two generalized operators

where

( ) ( ) ( ) ( )

( ) ( )

3 2 3 2, , : , ,

: , ,
k

k

D
k kx

f fd
kdt t xD

f c D R c d R f c D R c d R f

f c D d R v

∂
∂

∂ ∂
∂ ∂

∇ = = ∇      

= +

( ) ( )
( ) ( )

( ) ( )
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( )
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1
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two generalized operators

where

D D
k k kfg f g cg f∇ = ∇ + ∇⇒

⇒

( ) ( ) ( ) ( )

( ) ( )

3 2 3 2, , : , ,

: , ,
k

k

D
k kx

f fd
kdt t xD

f c D R c d R f c D R c d R f

f c D d R v

∂
∂

∂ ∂
∂ ∂

∇ = = ∇      
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3

2 /21
3/2 /2

2 2
2 /2

2 3/23
3 /2

1
3 2

, ,

,

,

, , , ,

D d

d

D

Dd D
d

d
d

D
D

c D d R

c d R

c D R

c D d R c D R c d R
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Γ Γ
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=

=
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=
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Drawbacks of Tarasov’s formulation

1. Usual fractional derivative (Riemann-Liouville) of a constant

2. The mechanics-type derivation of wave equations yields a different result 
from the variational-type derivation

3. The 3d wave equation

does not reduce to the 1d wave equation

[Continuous medium model for fractal media, Phys. Lett. 336 (2005)]
[Fractional hydrodynamic equations for fractal media, Ann. Phys. 318 (2005)]
[Fractional Dynamics, Springer (2010)]

( )
( ) ( )

2
32

2 2 2
2

2 2 3
3

2

D
D

Dp c R D R p R p
t

−
−

 Γ∂    = − ⋅∇ + ∇  ∂  Γ 

 

2
2

1 12( , ) ( , )p pc D x v c D x
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 

0≠



Formulation via product measures…

Mass in an anisotropic fractal:

characteristic length in 

fractal dimension along 

In other directions the fractal dimension is not necessarily the sum of 
projected fractal dimension…
(Falconer, 2003): "Many fractals encountered in practice are not actually 
products, but are product-like." 

expect

1 3 3
31 2

1 2 3
10 20 30

( , , ) xx xm x x x
l l l

α α α
     

∼      
     

0kl

kα

1 2 3D α α α= + +



Formulation via product densities…

power law relation w.r.t. each coordinate

use a fractional integral with product measure

and length measurement in each coordinate 



Vector calculus on anisotropic fractals

fractal derivative (fractal gradient) operator

= base vectors

fractal divergence of a vector field

fractal curl operator of a vector field

four fundamental identities of vector calculus 

48

( )
1

1    or      (no sum on )D D D
k k k k

k
k

xc
ϕϕ ϕ ϕ ∂

= ∇ ∇ =
∂

e∇

( )
1

1div     or    D D k
k k k

k

ff
xc
∂

= ⋅ ∇ =
∂

f f∇

( )
1

1curl     or    D D i
jki k i jki k

k

fe f e
xc
∂

= × ∇ =
∂

f f∇

⇒

⇒

⇒



divergence of curl of a vector field 

curl of gradient of a scalar field 

divergence of gradient of a vector field fractal Laplacian

curl of curl operating on a vector field 

49

( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1div curl 0D D i i
j jki k i jki jkij k j k

j k j k

f ffe f e e
x x x xc c c c

 ∂ ∂∂
⋅ = ∇ ⋅ ∇ = = = 

∂ ∂ ∂ ∂  
f

( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1curl (grad ) ( ) 0D D i
ijk j k ijk jkij k j k

j k j k

fe e e
x x x xc c c c

ϕϕ ϕ
  ∂∂ ∂

× = ∇ ∇ = = = 
∂ ∂ ∂ ∂  

( ) ( ) ( ) ( )
1 1 1 1

,1 1 1div (grad ) ,  jD D
j k jj j j j

j jx xc c c c

ϕϕϕ ϕ
   ∂∂ ∂

⋅ = ∇ ⋅∇ = =   
∂ ∂      

( )curl (curl ) ( )D D D D D D
prj r jki r i p r r r r pe e f f f× = ∇ ∇ = ∇ ∇ −∇ ∇f



divergence of curl of a vector field 

curl of gradient of a scalar field 

divergence of gradient of a vector field fractal Laplacian

curl of curl operating on a vector field 

Helmholtz decomposition holds: 
with

50

( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1div curl 0D D i i
j jki k i jki jkij k j k

j k j k

f ffe f e e
x x x xc c c c

 ∂ ∂∂
⋅ = ∇ ⋅ ∇ = = = 

∂ ∂ ∂ ∂  
f
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1 1 1 1
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j k j k

fe e e
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ϕϕϕ ϕ
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( )curl (curl ) ( )D D D D D D
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Stokes theorem
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1 1
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… volume coefficient

… surface coefficient associated with the surface



Fractional integral

fractal derivative:

[ZAMP 2009; Proc. R. Soc. A, 2009;  J. Elast, 2011]



1. is the “inverse” operator of fractional integrals:

and

2. rule of “term-by-term” differentiation is satisfied:

3. operation on any constant is zero:

Note: usual fractional derivative (Riemann-Liouville) of a constant 

fractional generalization of Reynolds transport theorem:

D∇



fractal effects are present 
between the resolutions 
(upper and lower cut-offs) 
l and L in a fractal RVE



56 Elastodynamics of Fractal 
Micropolar Solids – H. Joumaa & 

M  Ostoja-Starzewski

random
Apollonian 
packing



57 Elastodynamics of Fractal 
Micropolar Solids – H. Joumaa & 

M  Ostoja-Starzewski

Apollo and Daphne 
by Bernini 
[Galleria Borghese]



Express Cauchy stress via fractional integral, and strain via fractal derivative

… balance law of linear momentum in fractal medium

e.g. a linear elastic solid: 

     
W W Wk D k D lk l d

d v dV X dV n dS
dt

ρ σ
∂

= +∫ ∫ ∫B S
D

d dV
dt

ρ = +∫ v F F
W

( )
2 2

S l
k lk l d lk lS S

F n dS n c dSσ σ= =∫ ∫



Balance of angular momentum in fractal medium

… using G-G theorem and Reynold’s transport theorem, localize to:

… but due to general anisotropy of a fractal

ijk j k D ijk j k D ijk j lk l d
d e x v dV e x X dV e x n dS
dt

ρ σ
∂

= +∫ ∫ ∫W W W

( )
1

0jk
ijk je

c
σ

=

jk kjσ σ≠

micropolar continuum
not Cauchy continuum!

( )
1

ijk D
jk j ji i ij jj

e
Y I w

c
τ µ+∇ + = 

ij ij ij ije τ γ µ κ= + 

τ µmust work with stress       and couple-stress tensors

Balance of energy:

[Int. J. Eng. Sci., 2011]



1d wave equation

Mechanical approach:

Hooke’s law

With conventional strain definition

With our strain definition

Variational approach:

60

1
1 ,xu cρ σ−=

Eσ ε= 1
1 ,xu Ecρ ε−=

1
1 ,xxu Ec uρ −=
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2 2
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2 2DT u dl u c dxρ ρ= =∫ ∫ 

2 2
1

1 1
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( ) 0Ldt T U dtδ δ= − =∫ ∫



2d anti-plane wave equation

3d waves

61
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ρ κµ φ

ρ φ φ κµ φ

 = ∇ ∇ −
 

= ∇ ∇ + ∇ −





( )  0D D D D
x x x xEI w∇ ∇ ∇ ∇ =

[Proc. R. Soc. A, 2013]

Timoshenko beam

mechanical approach is consistent with the variational approach



Electromagnetism on Anisotropic Fractal Media

Charge conservation on anisotropic fractals

All the relations will depend explicitly on three fractal dimensions        (i = 1,2,3) 
in the respective Cartesian direction as well as the spatial resolution. 

All the formulas may be evaluated by

62

   d DW WdS dVη∂ = −∫ ∫J n⋅
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local form   

D d
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Electromagnetism on Anisotropic Fractal Media

Charge conservation on anisotropic fractals

Ohm’s law for anisotropic fractals:

… by analogy to elastic media where Hooke's law is unchanged when going 
from non-fractal to fractal media 
that result ensured the consistency of the Newtonian and Lagrangian-
Hamiltonian approaches to the derivation of governing equations 
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   d DW WdS dVη∂ = −∫ ∫J n⋅

global form   

local form   

D d
W WD Ddt

D
t

dV dVη

η

∫ ∫

∂
∂

∇ ⋅ = −

∇ ⋅ = −

J

J

    or     i ij jJ Eσ= ⋅ =J Eσ

⇒



Electromagnetism on Anisotropic Fractal Media

Faraday’s law

Ohm’s law for anisotropic fractals:

… by analogy to elastic media where Hooke's law is unchanged when going 
from non-fractal to fractal media 
that result ensured the consistency of the Newtonian and Lagrangian-
Hamiltonian approaches to the derivation of governing equations 
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Electromagnetism on Anisotropic Fractal Media

Ampère's law

where

… subject to constraints:
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Electromagnetism on Anisotropic Fractal Media

Derivation from variational principle

the same set of equations as before
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Griffith theory of elastic-brittle porous solids

Energy release rate:

Dead-load conditions:

Fixed-grip conditions:

critical stresses get modified
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Peeling a layer off a substrate

Dead-load conditions:

If random material 

Fixed-grip conditions:

G can be computed by direct averaging of E
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Peeling a layer off a substrate

Dead-load conditions:

If random material 

Fixed-grip conditions:

G can be computed by direct averaging of E
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In fractal porous media:

• when the surface and volume fractal dimensions (d and D) become 
integers (2 and 3, resp.), or when R falls outside [l, L], all the 
equations revert back to well-known forms of conventional 
continuum mechanics of non-fractal media

• Beltrami-Michell reciprocity theorem, uniqueness…
• extension to thermomechanics with internal variables
• field/wave equations derived from variational principles are the 

same as those from mechanical approach
• …

[IJES 2011, ZAMP 2012, ZAMM 2013]

• can extend to finite motions

[PRE, 2013]



Common techniques for generating fractals:

Escape-time fractals – via recurrence relation (Mandelbrot, Julia sets…)
Iterated function systems – via a fixed geometric replacement rule 

(Cantor set, Sierpiński carpet…)
Random fractals – via stochastic processes 

(Brownian motion/sheets, Lévy flight…)
Strange attractors – via chaos

Can fractals be generated by mechanics?
e.g. by elasto-inelastic transitions

Can we develop a continuum-type theory of fractal porous media?

Can we solve initial-boundary-value problems?  need random fields
71



RFs with exponential or Gaussian correlation functions

( ) exp[ ], 0, 0 2C x Ax Aα α= − > < ≤

random fields
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RFs with fractal + Hurst effects 
Cauchy Dagum

( ) /
( ; , ) : 1 1 ,C r r

γ βββ γ
−−= − +D( ) /

( ; , ) : 1 ,C r r
β ααα β

−
= +C

0β > 0 2α< ≤ 7γ β< 2 (5 7) 0β β γ γ+ − + <

random fields
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Can grasp fractals and Hurst effect

roughness
heavy-tail behavior of covariance function

A random process Zx is statistically self-similar if it obeys
for some constant c, where H is known as the Hurst parameter

• Crudely: when stretched by some factor c in x dimension, Z
looks the same if stretched by c-H in the Z dimension

• Most time series Zt look “flat” if stretched like this

H
x cxZ c Z−=
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fractals: those enchanting, self-similar things

Hurst effect: long-term memory, extreme events

0 < H < 0.5: time series with negative autocorrelation (a decrease 
between values will likely be followed by an increase)

0.5 < H < 1: time series with positive autocorrelation (an increase 
between values followed by another increase)

H = 0.5: true random walk, w/o preference for a decrease or increase 
following any particular value
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Gaussian white noise: 

Ornstein-Uhlenbeck: 

Matérn:

Cauchy:

Dagum:

( ) : ( ), 0,δ= ≥C r r rWN

( ; ) : , 0,
2

ννν −= ≥rC r rOU e

( ; ) : ( ), 0,ν
νν = ≥C r r r rM K

( ) /
( ; , ) : 1 1 ,

ε δδδ ε
−−= − +C r rD

( ) /
( ; , ) : 1 ,

η θθθ η
−

= +C r rC

0 2δ< ≤
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OBSERVE

1. Time-stationary random forcings of Cauchy and Dagum types lack 
explicit parametric spectral densities, yet they allow decoupling of the 
fractal dimension and Hurst effect. 

2. Working directly in time domain, find transient 2nd-order characteristics 
of response and, for comparison, also examine effects of Gaussian 
white noise, Ornstein-Uhlenbeck, and Matérn forcings. 

3. Given the same variance on input, the variance on output is strongest 
for Matérn, then Cauchy, then O-U, then white noise, and finally, 
Dagum forcing. 

4. If the excitation correlation function is Matérn, the correlation function 
of response is approximately Matérn. 

• … response due to Cauchy excitation is not Cauchy
• … cannot yet say whether response due to Dagum excitation (with its 

fractal and Hurst effects) is Dagum or not



• Constitutive law
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Governing Equations

• Characteristics
– reproduction of Eringen’s work in absence of fractal effects
– limitation to box shaped domains that can be contained in Cartesian system 
– fractal dimensions in three directions
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Numerical Solution
• Finite element formulation

• Resulting equation
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Simulation Results
• Modal excitation
• Transient response
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• Modal shapes
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Analytical solution

• Modal decomposition in a spherical system

• Decoupled solution
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Numerical solution

• Finite element formulation

• Elastodynamic approach
– elemental mass matrix
– elemental elastic matrices

– final assembly
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Simulation results

spherical shell meshed with 
tetrahedral elements

• Modal excitations on a spherical shell

• Newmark method (trapezoidal) for time-marching 
transient solution



• 3d wave equation

• Analytical solution
– limited to special problems 
– modal decomposition in Cartesian system

– two independent homogeneous solutions (fractal harmonic 
functions)

Elastodynamics of fractal solids
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Simplified Problems

• Difficulty (if not impossibility) to obtain analytic solutions to 
general problems)

• Sequential validation of the numerical solver by…
• Special problems constructed by imposed kinematics

– type I
• a:
• b:

– type II: in-plane

– type III: out-of-plane 
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Problem I-a, I-b

• Modal decomposition
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Problem II

• Governing equation for
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FEM Procedure – Linear Momentum
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• Weak formulation
– multiply by admissible (test) function                      and integrate 

over domain
– apply Green-Gauss theorem to eliminate surface integrals 

• Mass and stiffness matrices evaluation
– absence of fractal or micropolar effects in mass matrix
– loss of SPD feature for stiffness matrices
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FEM Procedure – Angular Momentum

• Weak formulation generation (                       is the test function)
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Integration & Time March

• Application of the 4-node tetrahedral 
element
– Integration by Gauss-Legendre 

quadrature formulas (Rathod, 2005)
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First Mode Excitation
• Numerical solution snapshots for normalized 

displacement along all three directions in the first mode 
excitation
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Second Mode Excitation
• Numerical solution snapshots for normalized 

displacement along all three directions in the second 
mode excitation



Transient Response - First & Second Mode 
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Electromagnetism on Anisotropic Fractal Media

Second order differential equations of electromagnetism

conductor:

dielectric:

Poynting vector has the same form as in non-fractal media
but the electric and magnetic force densities change
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WAVEFRONTS IN RANDOM MEDIA
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studies  of wave phenomena

various classifications possible

linear nonlinear

steady-state transient

whole space-time wavefront

deterministic random

analytical computational

…
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studies  of wave phenomena

various classifications possible

linear nonlinear

steady-state transient

whole space-time wavefront

deterministic random

analytical computational

…
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Indicatrix envelopes in random media:

(a) locally isotropic

(b) locally anisotropic



Basic methods in stochastic linear wave propagation
Long wavelength case
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Basic methods in stochastic linear wave propagation
Long wavelength case

6

Series expansion

     

     

     

     
     

          



Basic methods in stochastic linear wave propagation
Short wavelength case – ray method

7

                         

Fermat’s principle

Using the Euler-Lagrange equations,
obtain equations of ray dynamics:

If want to account for local anisotropy, use

…obtain equations of ray dynamics:



• Half-Plane subject to load (Lamb’s Problem)
– Normal, triangular-impulse load
– Solved by cellular automata (CA) or peridynamics (PD)

• Motivation:
– Details of cable-cable impacts
– Surface structures subject to earthquakes, impact…
– Terrorist attacks on structures, explosions

Dynamic/Impact Models



Simulation of elastodynamics on a square grid

Plots of displacement magnitude

Random mass density on a coarse grid



Comparing CA and PD

Longitudinal 
Wave

Shear 
Wave

Rayleigh (surface) 
Wave



Towards spectral finite elements for random media
Spectral finite element for waves in rods
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Towards spectral finite elements for random media
Spectral finite element for flexural waves
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Transient waves in heterogeneous nonlinear media

A class of models of random media

Consider various material parameters as random fields

(a) linear elastic; 
(b) soft bilinear elastic; 

(c) soft non-linear elastic; 
(d) linear-hysteretic. 
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Stochastic evolution of simple wave

straight characteristics 

are replaced 

by wedges of random curves

grain-to-grain transmission:

2
1
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Transient waves in random bilinear elastic media

washing-out of a pulse

or

shock diffusion
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Transient waves in random nonlinear elastic media

random medium:
characteristic are curving
due to stochastic wave attenuation

washing-out of pulse is amplified

homogeneous medium:
characteristic remain straight

washing-out of pulse
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Transient waves in random nonlinear elastic media

homogeneous medium:
characteristic remain straight

shock formation

random medium:
characteristic are curving
due to stochastic wave attenuation

earlier shock formation, weaker magnitude
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Transient waves in random elastic-hysteretic media

homogeneous medium:
deterministic shock formation

random medium:
strong scatter in shock formation
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Wavefront in continuum mechanics 
is modeled as a singular surface

… idealized model: 

homogeneous continuum, no microstructure
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Wavefront in a homogeneous anisotropic 
medium, propagating in direction , 
locally along a ray of direction . 

Wavefront in a realization of 
a random anisotropic medium.
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Indicatrix envelopes in random media:

(a) locally isotropic

(b) locally anisotropic.
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Bernoulli equation

Acceleration waves in 1D media

dissipation elastic nonlinearity

competition

in deterministic media:
[Coleman, Gurtin & Herrera, 1965;
Bland, 1966; Chen, 1971]
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  1 /

driven by random fields
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2

0 20

0 0 02 2

00 0

0 0

,     ,     .
2 2

00 0, , ,

is driven by driven by 
a four-component random field
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Bernoulli equation

Acceleration waves in 1D media

random fields: dissipation elastic nonlinearity

stochastic competition

in random media
[ 1991; . 1999; 

. 2003; 2006]

2

0

1 ln(1 )

2 1
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Bernoulli equation

Acceleration waves in 1D media

random fields: dissipation elastic nonlinearity

stochastic competition

Model with two or four correlated noises

Noises are white, or Gaussian, Ornstein-Uhlenbeck

Micromechanics-based random fields

in random media
[ 1991; . 1999; 

. 2003; 2006]

2

2 1
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Initial condition

Shock waves in 1D media

0( ,0) , ( ,0) 0,     (0, ) ( )

, ,

[[ ]] [[ , ]]   in  ( , )

Momentum balance

Dynamic compatibility

Kinematic compatibility

[[ , ]] ,

• First, deterministic, (in)homogeneous
[Valanis, 1965; 
Coleman, Gurtin & Herrera, 1965;
Achenbach & Reddy, 1967; 
Singh & Gupta, 1986]

• Next, random media
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Viscoelastic response

Wave propagation speed 

Evolution equation

0 01 1

1 1( ) (0) ( ) , ( ) ( ) (0) , ( ) , ( ) , ( ) ,

(0) .

, (0)1[[ ]] [[ ]].
2 (0)

0
, (0)1[[ ]] exp .

2 (0)

deterministic attenuation, (0) 0,  (0) 0
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Viscoelastic response

Wave propagation speed 

Evolution equation

0 01 1

1 1( ) (0) ( ) , ( ) ( ) (0) , ( ) , ( ) , ( ) ,

(0) .

, (0)1[[ ]] [[ ]].
2 (0)

0
, (0)1[[ ]] exp .

2 (0)

deterministic attenuation, (0) 0,  (0) 0

In random medium are random fields,  (0),  , (0)

stochastic evolution
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Stochastic evolution equation for weakly inhomogeneous media:

for driven by random field

Wavefront's position:

random speed random arrival time

1/2

3/22 2

[[ ]] , ,

( )

0
( , )

( , )
( , )( , )
( , )

(a) uncoupled model (b) coupled model
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Wavefront in a homogeneous anisotropic 
medium, propagating in direction , 
locally along a ray of direction . 

Wavefront in a realization of 
a random anisotropic medium.
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Random field model of weakly inhomogeneous media

How different is the response of random medium

from that of homogeneous medium ? 

1 1

2 2

3 1

, 0
, 0

, 0

{ , , ;  [0, )}

1,2,3

;B

hom

, 0

1

[ 0;  1,2,3]
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An analytically tractable case: white noise randomness in only

stochastic evolution equation = Stratonovich equation:

Stratonovich-type differential of Wiener process

1/2

3/2

1/2

3/2

( )

2

2 2

( ) ( ) ( )

( )

( )

( ) ( )

1/2

3/2 3

1/2

3/2

( ) 21
22 2 8

2 2

( ) ( ) ( )

( ) ( ) ( )

( )

Itô equation:

differential of Wiener process
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zero-mean white noise  in  results in attenuation of average 
amplitude being weaker than that in the homogeneous medium 

Itô formula for :
2

2
2

1( ) ( ) ( ) ( )
2

1/2
2
23/2 3( )

2 8

1/2
2
23/2 3(0)exp

2 8

hom

Same result for being an Ornstein-Uhlenbeck noise
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Again, noise in  implies that attenuates more slowly 
than in

evolution of second moment:

1/2
2
23/2 3( )

2 8

1/2
2
23/2 3(0)exp

2 8

hom

1/2
2 2 2

23/2 34

2
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Fokker-Planck equation: 0 0 0
( , ) ( , ),     ( , ) ( )

1( , ) ( ) ( , ) [ ( ) ( , )]
2
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modeled by Ornstein-Uhlenbeck processes

Gaussian, Markovian and stationary, all very realistic properties

correlation f’s

{ , , ;  [0, )} ,  1,2,3

2 , ,

1 /

= standard deviations

Assume shock evolution to be independent of shock front thickness:

,X AX B W

2 exp ,     1,2,3

= correlation lengths

1/2
2 2 3 3

3/2
2 2

, ,

2 ,
/
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random random

random , , uncorrelated

correlation lengths = 1
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random random

random , , uncorrelated

correlation lengths = 10
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modeled by Ornstein-Uhlenbeck processes{ , , ;  [0, )} ,  1,2,3

Assume shock evolution to be coupled with shock front thickness:

the thinner is the wavefront, the stronger is the randomness in constitutive response

correlation lengths and standard deviations

1/2
2 2 3 3

3/2
2 2

, ,

2 ,

,

w/ initial conditions: 0 01,   1,   , 0, 1,2,3

10-component stochastic dynamical system
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random random

random , , uncorrelated

correlation lengths = 1


